Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jan 15;99(2):220–227. doi: 10.1172/JCI119150

Deficiency of Src family kinases Fgr and Hck results in activation of erythrocyte K/Cl cotransport.

L De Franceschi 1, L Fumagalli 1, O Olivieri 1, R Corrocher 1, C A Lowell 1, G Berton 1
PMCID: PMC507789  PMID: 9005990

Abstract

Src-family kinases play a central role in regulation of hematopoietic cell functions. We found that mouse erythrocytes express the Src-family kinases Fgr and Hck, as well as Lyn. To directly test whether Fgr and Hck play any role in erythrocyte function, we analyzed red cells isolated from fgr-/-, hck-/-, and fgr-/- hck-/- knock-out mice. Mean corpuscular hemoglobin concentration and median density are increased, while K content is decreased, in fgr-/- hck-/- double-mutant erythrocytes compared with wild-type, fgr-/-, or hck-/- erythrocytes. Na/K pump and Na/K/Cl cotransport were not altered, but K/Cl cotransport activity was significantly and substantially higher (approximately three-fold) in fgr-/- hck-/- double-mutant erythrocytes. This enhanced K/Cl cotransport activity did not depend on cell age. In fact, in response to bleeding, K/Cl cotransport activity increased in parallel with reticulocytosis in wild-type erythrocytes, while abnormal K/Cl cotransport did not change as a consequence of reticulocytosis in fgr-/- hck-/- double-mutant erythrocytes. Okadaic acid, an inhibitor of a phosphatase that has been implicated in activation of the K/Cl cotransporter, inhibited K/Cl cotransport in wild-type and fgr-/- hck-/- double-mutant erythrocytes to a comparable extent. In contrast, staurosporine, an inhibitor of a kinase that has been suggested to negatively regulate this same phosphatase enhanced K/Cl cotransport in wild-type but not in fgr-/- hck-/- double-mutant erythrocytes. On the basis of these findings, we propose that Fgr and Hck are the kinases involved in the negative regulation of the K/Cl cotransporter-activating phosphatase. Abnormality of erythrocyte K/Cl cotransport in fgr-/- hck-/- double-mutant animals represents the first demonstration that Src-family kinases may be involved in regulation of membrane transport.

Full Text

The Full Text of this article is available as a PDF (241.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armsby C. C., Brugnara C., Alper S. L. Cation transport in mouse erythrocytes: role of K(+)-Cl- cotransport in regulatory volume decrease. Am J Physiol. 1995 Apr;268(4 Pt 1):C894–C902. doi: 10.1152/ajpcell.1995.268.4.C894. [DOI] [PubMed] [Google Scholar]
  2. Armsby C. C., Brugnara C., Alper S. L. Cation transport in mouse erythrocytes: role of K(+)-Cl- cotransport in regulatory volume decrease. Am J Physiol. 1995 Apr;268(4 Pt 1):C894–C902. doi: 10.1152/ajpcell.1995.268.4.C894. [DOI] [PubMed] [Google Scholar]
  3. Badwey J. A., Erickson R. W., Curnutte J. T. Staurosporine inhibits the soluble and membrane-bound protein tyrosine kinases of human neutrophils. Biochem Biophys Res Commun. 1991 Jul 31;178(2):423–429. doi: 10.1016/0006-291x(91)90124-p. [DOI] [PubMed] [Google Scholar]
  4. Benos D. J., Tosteson D. C. Cation movements across mouse red blood cells. Biochim Biophys Acta. 1980 Sep 2;601(1):167–179. doi: 10.1016/0005-2736(80)90522-2. [DOI] [PubMed] [Google Scholar]
  5. Berton G., Fumagalli L., Laudanna C., Sorio C. Beta 2 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J Cell Biol. 1994 Aug;126(4):1111–1121. doi: 10.1083/jcb.126.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bize I., Dunham P. B. H2O2 activates red blood cell K-Cl cotransport via stimulation of a phosphatase. Am J Physiol. 1995 Oct;269(4 Pt 1):C849–C855. doi: 10.1152/ajpcell.1995.269.4.C849. [DOI] [PubMed] [Google Scholar]
  7. Bize I., Dunham P. B. Staurosporine, a protein kinase inhibitor, activates K-Cl cotransport in LK sheep erythrocytes. Am J Physiol. 1994 Mar;266(3 Pt 1):C759–C770. doi: 10.1152/ajpcell.1994.266.3.C759. [DOI] [PubMed] [Google Scholar]
  8. Bolen J. B. Protein tyrosine kinases in the initiation of antigen receptor signaling. Curr Opin Immunol. 1995 Jun;7(3):306–311. doi: 10.1016/0952-7915(95)80103-0. [DOI] [PubMed] [Google Scholar]
  9. Bolen J. B., Rowley R. B., Spana C., Tsygankov A. Y. The Src family of tyrosine protein kinases in hemopoietic signal transduction. FASEB J. 1992 Dec;6(15):3403–3409. doi: 10.1096/fasebj.6.15.1281458. [DOI] [PubMed] [Google Scholar]
  10. Brugnara C., Bunn H. F., Tosteson D. C. Ion content and transport and the regulation of volume in sickle cells. Ann N Y Acad Sci. 1989;565:96–103. doi: 10.1111/j.1749-6632.1989.tb24155.x. [DOI] [PubMed] [Google Scholar]
  11. Brugnara C. Characteristics of the volume- and chloride-dependent K transport in human erythrocytes homozygous for hemoglobin C. J Membr Biol. 1989 Oct;111(1):69–81. doi: 10.1007/BF01869210. [DOI] [PubMed] [Google Scholar]
  12. Brugnara C., Van Ha T., Tosteson D. C. Properties of K+ transport in resealed human erythrocyte ghosts. Am J Physiol. 1988 Sep;255(3 Pt 1):C346–C356. doi: 10.1152/ajpcell.1988.255.3.C346. [DOI] [PubMed] [Google Scholar]
  13. Brugnara C., de Franceschi L. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes. J Cell Physiol. 1993 Feb;154(2):271–280. doi: 10.1002/jcp.1041540209. [DOI] [PubMed] [Google Scholar]
  14. Canessa M., Fabry M. E., Blumenfeld N., Nagel R. L. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol. 1987;97(2):97–105. doi: 10.1007/BF01869416. [DOI] [PubMed] [Google Scholar]
  15. Chen J., Martin B. L., Brautigan D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science. 1992 Aug 28;257(5074):1261–1264. doi: 10.1126/science.1325671. [DOI] [PubMed] [Google Scholar]
  16. Chen J., Parsons S., Brautigan D. L. Tyrosine phosphorylation of protein phosphatase 2A in response to growth stimulation and v-src transformation of fibroblasts. J Biol Chem. 1994 Mar 18;269(11):7957–7962. [PubMed] [Google Scholar]
  17. DANON D., MARIKOVSKY V. DETERMINATION OF DENSITY DISTRIBUTION OF RED CELL POPULATION. J Lab Clin Med. 1964 Oct;64:668–674. [PubMed] [Google Scholar]
  18. De Franceschi L., Beuzard Y., Brugnara C. Sulfhydryl oxidation and activation of red cell K(+)-Cl- cotransport in the transgenic SAD mouse. Am J Physiol. 1995 Oct;269(4 Pt 1):C899–C906. doi: 10.1152/ajpcell.1995.269.4.C899. [DOI] [PubMed] [Google Scholar]
  19. Fujita-Yamaguchi Y., Kathuria S. Characterization of receptor tyrosine-specific protein kinases by the use of inhibitors. Staurosporine is a 100-times more potent inhibitor of insulin receptor than IGF-I receptor. Biochem Biophys Res Commun. 1988 Dec 30;157(3):955–962. doi: 10.1016/s0006-291x(88)80967-7. [DOI] [PubMed] [Google Scholar]
  20. Hall A. C., Ellory J. C. Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta. 1986 Jun 26;858(2):317–320. doi: 10.1016/0005-2736(86)90338-x. [DOI] [PubMed] [Google Scholar]
  21. Harrison M. L., Isaacson C. C., Burg D. L., Geahlen R. L., Low P. S. Phosphorylation of human erythrocyte band 3 by endogenous p72syk. J Biol Chem. 1994 Jan 14;269(2):955–959. [PubMed] [Google Scholar]
  22. Jennings M. L., Schulz R. K. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. J Gen Physiol. 1991 Apr;97(4):799–817. doi: 10.1085/jgp.97.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jennings M. L., al-Rohil N. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol. 1990 Jun;95(6):1021–1040. doi: 10.1085/jgp.95.6.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Johansen J. W., Ingebritsen T. S. Phosphorylation and inactivation of protein phosphatase 1 by pp60v-src. Proc Natl Acad Sci U S A. 1986 Jan;83(2):207–211. doi: 10.1073/pnas.83.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Joiner C. H., Franco R. S., Jiang M., Franco M. S., Barker J. E., Lux S. E. Increased cation permeability in mutant mouse red blood cells with defective membrane skeletons. Blood. 1995 Dec 1;86(11):4307–4314. [PubMed] [Google Scholar]
  26. Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krarup T., Dunham P. B. Reconstitution of calyculin-inhibited K-Cl cotransport in dog erythrocyte ghosts by exogenous PP-1. Am J Physiol. 1996 Mar;270(3 Pt 1):C898–C902. doi: 10.1152/ajpcell.1996.270.3.C898. [DOI] [PubMed] [Google Scholar]
  28. Lauf P. K., Adragna N. C. Temperature-induced functional deocclusion of thiols inhibitory for sheep erythrocyte K-Cl cotransport. Am J Physiol. 1995 Nov;269(5 Pt 1):C1167–C1175. doi: 10.1152/ajpcell.1995.269.5.C1167. [DOI] [PubMed] [Google Scholar]
  29. Lauf P. K., Bauer J., Adragna N. C., Fujise H., Zade-Oppen A. M., Ryu K. H., Delpire E. Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol. 1992 Nov;263(5 Pt 1):C917–C932. doi: 10.1152/ajpcell.1992.263.5.C917. [DOI] [PubMed] [Google Scholar]
  30. Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external ions. J Membr Biol. 1983;73(3):237–246. doi: 10.1007/BF01870538. [DOI] [PubMed] [Google Scholar]
  31. Lauf P. K., Valet G. Na+ K+ pump and passive K+ transport in large and small red cell populations of anemic high and low K+ sheep. J Cell Physiol. 1983 Jul;116(1):35–44. doi: 10.1002/jcp.1041160107. [DOI] [PubMed] [Google Scholar]
  32. Link D. C., Zutter M. The proto-oncogene c-fgr is expressed in normal mantle zone B lymphocytes and is developmentally regulated during myelomonocytic differentiation in vivo. Blood. 1995 Jan 15;85(2):472–479. [PubMed] [Google Scholar]
  33. Lowell C. A., Fumagalli L., Berton G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol. 1996 May;133(4):895–910. doi: 10.1083/jcb.133.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lowell C. A., Soriano P. Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories. Genes Dev. 1996 Aug 1;10(15):1845–1857. doi: 10.1101/gad.10.15.1845. [DOI] [PubMed] [Google Scholar]
  35. Lowell C. A., Soriano P., Varmus H. E. Functional overlap in the src gene family: inactivation of hck and fgr impairs natural immunity. Genes Dev. 1994 Feb 15;8(4):387–398. doi: 10.1101/gad.8.4.387. [DOI] [PubMed] [Google Scholar]
  36. Nakano H., Kobayashi E., Takahashi I., Tamaoki T., Kuzuu Y., Iba H. Staurosporine inhibits tyrosine-specific protein kinase activity of Rous sarcoma virus transforming protein p60. J Antibiot (Tokyo) 1987 May;40(5):706–708. doi: 10.7164/antibiotics.40.706. [DOI] [PubMed] [Google Scholar]
  37. Olivieri O., Bonollo M., Friso S., Girelli D., Corrocher R., Vettore L. Activation of K+/Cl- cotransport in human erythrocytes exposed to oxidative agents. Biochim Biophys Acta. 1993 Mar 10;1176(1-2):37–42. doi: 10.1016/0167-4889(93)90174-n. [DOI] [PubMed] [Google Scholar]
  38. Olivieri O., De Franceschi L., Capellini M. D., Girelli D., Corrocher R., Brugnara C. Oxidative damage and erythrocyte membrane transport abnormalities in thalassemias. Blood. 1994 Jul 1;84(1):315–320. [PubMed] [Google Scholar]
  39. Quintrell N., Lebo R., Varmus H., Bishop J. M., Pettenati M. J., Le Beau M. M., Diaz M. O., Rowley J. D. Identification of a human gene (HCK) that encodes a protein-tyrosine kinase and is expressed in hemopoietic cells. Mol Cell Biol. 1987 Jun;7(6):2267–2275. doi: 10.1128/mcb.7.6.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Secrist J. P., Sehgal I., Powis G., Abraham R. T. Preferential inhibition of the platelet-derived growth factor receptor tyrosine kinase by staurosporine. J Biol Chem. 1990 Nov 25;265(33):20394–20400. [PubMed] [Google Scholar]
  41. Shattil S. J., Ginsberg M. H., Brugge J. S. Adhesive signaling in platelets. Curr Opin Cell Biol. 1994 Oct;6(5):695–704. doi: 10.1016/0955-0674(94)90096-5. [DOI] [PubMed] [Google Scholar]
  42. Starke L. C., Jennings M. L. K-Cl cotransport in rabbit red cells: further evidence for regulation by protein phosphatase type 1. Am J Physiol. 1993 Jan;264(1 Pt 1):C118–C124. doi: 10.1152/ajpcell.1993.264.1.C118. [DOI] [PubMed] [Google Scholar]
  43. Tripodi G., Valtorta F., Torielli L., Chieregatti E., Salardi S., Trusolino L., Menegon A., Ferrari P., Marchisio P. C., Bianchi G. Hypertension-associated point mutations in the adducin alpha and beta subunits affect actin cytoskeleton and ion transport. J Clin Invest. 1996 Jun 15;97(12):2815–2822. doi: 10.1172/JCI118737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ulug E. T., Cartwright A. J., Courtneidge S. A. Characterization of the interaction of polyomavirus middle T antigen with type 2A protein phosphatase. J Virol. 1992 Mar;66(3):1458–1467. doi: 10.1128/jvi.66.3.1458-1467.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wechsler R. J., Monroe J. G. src-family tyrosine kinase p55fgr is expressed in murine splenic B cells and is activated in response to antigen receptor cross-linking. J Immunol. 1995 Apr 1;154(7):3234–3244. [PubMed] [Google Scholar]
  46. Yamanashi Y., Mori S., Yoshida M., Kishimoto T., Inoue K., Yamamoto T., Toyoshima K. Selective expression of a protein-tyrosine kinase, p56lyn, in hematopoietic cells and association with production of human T-cell lymphotropic virus type I. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6538–6542. doi: 10.1073/pnas.86.17.6538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. de Franceschi L., Rouyer-Fessard P., Alper S. L., Jouault H., Brugnara C., Beuzard Y. Combination therapy of erythropoietin, hydroxyurea, and clotrimazole in a beta thalassemic mouse: a model for human therapy. Blood. 1996 Feb 1;87(3):1188–1195. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES