Abstract
We previously found that local O2 extraction efficacy in isolated pump-perfused intestine was enhanced when systemic reflex vasoconstriction was stimulated by hypovolemia (Samsel, R.W., and P.T. Schumacker. 1994. J. Appl. Physiol. 77: 2291-2298). The microvascular mechanism underlying this beneficial effect could involve a redistribution of flow between mucosa and serosa, or an adjustment in the heterogeneity of perfusion within those regions. We measured regional blood flows and distributions of flow and capillary erythrocyte transit times in two segments of small intestine in anesthetized dogs (n = 10). Each vascularly isolated segment of intestine was pump-perfused under high flow (O2 supply-independent VO2) and low flow (O2 supply-dependent) conditions. During the first gut segment, the animal was kept normovolemic using i.v. fluids to minimize reflex vasoconstriction. During the second, the animal was hemorrhaged to augment vasoconstriction (n = 7), or kept normovolemic to control for the effects of time (n = 3). Blood flow distributions were measured using 15 microm radiolabeled microspheres. Tissue blood volume was measured using 99mTc-labeled red blood cells. Capillary volume was determined as the product of tissue blood volume and the histologically derived fraction of vascular volume in the capillaries. Transit times were calculated as the ratio of capillary volume to flow. Each gut segment was fixed and sectioned into 350 approximately 100 mg tissue pieces for analysis. Data revealed significant spatial heterogeneity of blood flow and capillary transit times in both mucosa and muscularis, with relative dispersions (SD/Mean) ranging from 23 to 97%. Hypovolemia caused an increase in flow heterogeneity in muscularis at both high and low flow states, and in mucosa under high flow conditions. However, hypovolemia also elicited changes in capillary volume, such that transit time heterogeneity remained unchanged. Augmentation of vasoconstrictor tone caused a redistribution of flow toward mucosa (P < 0.003) under high and low flow conditions. This redistribution correlated with the improvements in O2 extraction ratio (P = 0.022). Thus, the improvement in gut O2 extraction efficacy seen with increased vasoconstriction may be explained mostly by an intramural redistribution of flow between mucosa and muscularis. Capillary transit time heterogeneity remained unchanged, suggesting that this variable is tightly regulated.
Full Text
The Full Text of this article is available as a PDF (208.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allard M. F., Kamimura C. T., English D. R., Henning S. L., Wiggs B. R. Regional myocardial capillary erythrocyte transit time in the normal resting heart. Circ Res. 1993 Jan;72(1):187–193. doi: 10.1161/01.res.72.1.187. [DOI] [PubMed] [Google Scholar]
- Bassingthwaighte J. B., King R. B., Roger S. A. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res. 1989 Sep;65(3):578–590. doi: 10.1161/01.res.65.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckberg G. D., Luck J. C., Payne D. B., Hoffman J. I., Archie J. P., Fixler D. E. Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol. 1971 Oct;31(4):598–604. doi: 10.1152/jappl.1971.31.4.598. [DOI] [PubMed] [Google Scholar]
- Cain S. M. Peripheral oxygen uptake and delivery in health and disease. Clin Chest Med. 1983 May;4(2):139–148. [PubMed] [Google Scholar]
- Cousineau D. F., Goresky C. A., Rose C. P., Simard A., Schwab A. J. Effects of flow, perfusion pressure, and oxygen consumption on cardiac capillary exchange. J Appl Physiol (1985) 1995 Apr;78(4):1350–1359. doi: 10.1152/jappl.1995.78.4.1350. [DOI] [PubMed] [Google Scholar]
- Dodd S. L., King C. E., Cain S. M. Responses of innervated and denervated gut to whole-body hypoxia. J Appl Physiol (1985) 1987 Feb;62(2):651–657. doi: 10.1152/jappl.1987.62.2.651. [DOI] [PubMed] [Google Scholar]
- Eckelman W. C., Reba R. C., Albert S. N. A rapid simple improved method for the preparation of Tc99m red blood cells for the determination of red cell volume. Am J Roentgenol Radium Ther Nucl Med. 1973 Aug;118(4):861–864. doi: 10.2214/ajr.118.4.861. [DOI] [PubMed] [Google Scholar]
- Ellsworth M. L., Popel A. S., Pittman R. N. Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res. 1988 May;35(3):341–362. doi: 10.1016/0026-2862(88)90089-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Granger D. N., Kvietys P. R., Perry M. A. Role of exchange vessels in the regulation of intestinal oxygenation. Am J Physiol. 1982 Jun;242(6):G570–G574. doi: 10.1152/ajpgi.1982.242.6.G570. [DOI] [PubMed] [Google Scholar]
- Granger H. J., Goodman A. H., Cook B. H. Metabolic models of microcirculatory regulation. Fed Proc. 1975 Oct;34(11):2025–2030. [PubMed] [Google Scholar]
- Hogg J. C., Martin B. A., Lee S., McLean T. Regional differences in erythrocyte transit in normal lungs. J Appl Physiol (1985) 1985 Oct;59(4):1266–1271. doi: 10.1152/jappl.1985.59.4.1266. [DOI] [PubMed] [Google Scholar]
- Honig C. R., Odoroff C. L. Calculated dispersion of capillary transit times: significance for oxygen exchange. Am J Physiol. 1981 Feb;240(2):H199–H208. doi: 10.1152/ajpheart.1981.240.2.H199. [DOI] [PubMed] [Google Scholar]
- Hultén L., Lindhagen J., Lundgren O. Sympathetic nervous control of intramural blood flow in the feline and human intestines. Gastroenterology. 1977 Jan;72(1):41–48. [PubMed] [Google Scholar]
- Humer M. F., Phang P. T., Friesen B. P., Allard M. F., Goddard C. M., Walley K. R. Heterogeneity of gut capillary transit times and impaired gut oxygen extraction in endotoxemic pigs. J Appl Physiol (1985) 1996 Aug;81(2):895–904. doi: 10.1152/jappl.1996.81.2.895. [DOI] [PubMed] [Google Scholar]
- King R. B., Bassingthwaighte J. B., Hales J. R., Rowell L. B. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res. 1985 Aug;57(2):285–295. doi: 10.1161/01.res.57.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lautt W. W., Graham S. A. Effect of nerve stimulation on percapillary sphincters, oxygen extraction, and hemodynamics in the intestines of cats. Circ Res. 1977 Jul;41(1):32–36. doi: 10.1161/01.res.41.1.32. [DOI] [PubMed] [Google Scholar]
- Maginniss L. A., Connolly H., Samsel R. W., Schumacker P. T. Adrenergic vasoconstriction augments tissue O2 extraction during reductions in O2 delivery. J Appl Physiol (1985) 1994 Apr;76(4):1454–1461. doi: 10.1152/jappl.1994.76.4.1454. [DOI] [PubMed] [Google Scholar]
- Marcus M. L., Kerber R. E., Erhardt J. C., Falsetti H. L., Davis D. M., Abboud F. M. Spatial and temporal heterogeneity of left ventricular perfusion in awake dogs. Am Heart J. 1977 Dec;94(6):748–754. doi: 10.1016/s0002-8703(77)80216-0. [DOI] [PubMed] [Google Scholar]
- Maxwell L. C., Shepherd A. P., Riedel G. L. Vasodilation or altered perfusion pressure moves 15-micrometers spheres trapped in the gut wall. Am J Physiol. 1982 Jul;243(1):H123–H127. doi: 10.1152/ajpheart.1982.243.1.H123. [DOI] [PubMed] [Google Scholar]
- Perry M. A., Granger D. N. Permeability of intestinal capillaries to small molecules. Am J Physiol. 1981 Jul;241(1):G24–G30. doi: 10.1152/ajpgi.1981.241.1.G24. [DOI] [PubMed] [Google Scholar]
- Piiper J., Pendergast D. R., Marconi C., Meyer M., Heisler N., Cerretelli P. Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J Appl Physiol (1985) 1985 Jun;58(6):2068–2074. doi: 10.1152/jappl.1985.58.6.2068. [DOI] [PubMed] [Google Scholar]
- Rose C. P., Goresky C. A., Bélanger P., Chen M. J. Effect of vasodilation and flow rate on capillary permeability surface product and interstitial space size in the coronary circulation. A frequency domain technique for modeling multiple dilution data with Laguerre functions. Circ Res. 1980 Sep;47(3):312–328. doi: 10.1161/01.res.47.3.312. [DOI] [PubMed] [Google Scholar]
- Rose C. P., Goresky C. A. Limitations of tracer oxygen uptake in the canine coronary circulation. Circ Res. 1985 Jan;56(1):57–71. doi: 10.1161/01.res.56.1.57. [DOI] [PubMed] [Google Scholar]
- Rose C. P., Goresky C. A. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ Res. 1976 Oct;39(4):541–554. doi: 10.1161/01.res.39.4.541. [DOI] [PubMed] [Google Scholar]
- Samsel R. W., Schumacker P. T. Systemic hemorrhage augments local O2 extraction in canine intestine. J Appl Physiol (1985) 1994 Nov;77(5):2291–2298. doi: 10.1152/jappl.1994.77.5.2291. [DOI] [PubMed] [Google Scholar]
- Sarks H. V., Mohrman D. E. Heterogeneity of flow as an explanation of the multi-exponential washout of inert gas from skeletal muscle. Microvasc Res. 1977 Mar;13(2):181–184. doi: 10.1016/0026-2862(77)90083-8. [DOI] [PubMed] [Google Scholar]
- Schumacker P. T., Cain S. M. The concept of a critical oxygen delivery. Intensive Care Med. 1987;13(4):223–229. doi: 10.1007/BF00265110. [DOI] [PubMed] [Google Scholar]
- Shepherd A. P. Intestinal O2 uptake during sympathetic stimulation and partial arterial occlusion. Am J Physiol. 1979 May;236(5):H731–H735. doi: 10.1152/ajpheart.1979.236.5.H731. [DOI] [PubMed] [Google Scholar]
- Shepherd A. P., Riedel G. L. Laser-Doppler blood flowmetry of intestinal mucosal hyperemia induced by glucose and bile. Am J Physiol. 1985 Apr;248(4 Pt 1):G393–G397. doi: 10.1152/ajpgi.1985.248.4.G393. [DOI] [PubMed] [Google Scholar]
- Thomas L. J., Jr Algorithms for selected blood acid-base and blood gas calculations. J Appl Physiol. 1972 Jul;33(1):154–158. doi: 10.1152/jappl.1972.33.1.154. [DOI] [PubMed] [Google Scholar]
- Tyml K., Mikulash K. Evidence for increased perfusion heterogeneity in skeletal muscle during reduced flow. Microvasc Res. 1988 May;35(3):316–324. doi: 10.1016/0026-2862(88)90086-6. [DOI] [PubMed] [Google Scholar]
- Tyml K. Red cell perfusion in skeletal muscle at rest and after mild and severe contractions. Am J Physiol. 1987 Mar;252(3 Pt 2):H485–H493. doi: 10.1152/ajpheart.1987.252.3.H485. [DOI] [PubMed] [Google Scholar]
- Vallet B., Lund N., Curtis S. E., Kelly D., Cain S. M. Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol (1985) 1994 Feb;76(2):793–800. doi: 10.1152/jappl.1994.76.2.793. [DOI] [PubMed] [Google Scholar]