Abstract
Hypothermia has been proposed as a neuroprotective strategy. However, short-term cooling after hypoxia-ischemia is effective only if started immediately during resuscitation. The aim of this study was to determine whether prolonged head cooling, delayed into the late postinsult period, improves outcome from severe ischemia. Unanesthetized near term fetal sheep were subject to 30 min of cerebral ischemia. 90 min later they were randomized to either cooling (n = 9) or sham cooling (n = 7) for 72 h. Intrauterine cooling was induced by a coil around the fetal head, leading initially to a fall in extradural temperature of 5-10 degrees C, and a fall in esophageal temperature of 1.5-3 degrees C. Cooling was associated with mild transient systemic metabolic effects, but not with hypotension or altered fetal heart rate. Cerebral cooling reduced secondary cortical cytotoxic edema (P < 0.001). After 5 d of recovery there was greater residual electroencephalogram activity (-5.2+/-1.6 vs. -15.5+/-1.5 dB, P < 0.001) and a dramatic reduction in the extent of cortical infarction and neuronal loss in all regions assessed (e.g., 40 vs. 99% in the parasagittal cortex, P < 0.001). Selective head cooling, maintained throughout the secondary phase of injury, is noninvasive and safe and shows potential for improving neonatal outcome after perinatal asphyxia.
Full Text
The Full Text of this article is available as a PDF (911.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beilharz E. J., Williams C. E., Dragunow M., Sirimanne E. S., Gluckman P. D. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Brain Res Mol Brain Res. 1995 Mar;29(1):1–14. doi: 10.1016/0169-328x(94)00217-3. [DOI] [PubMed] [Google Scholar]
- Bruno V. M., Goldberg M. P., Dugan L. L., Giffard R. G., Choi D. W. Neuroprotective effect of hypothermia in cortical cultures exposed to oxygen-glucose deprivation or excitatory amino acids. J Neurochem. 1994 Oct;63(4):1398–1406. doi: 10.1046/j.1471-4159.1994.63041398.x. [DOI] [PubMed] [Google Scholar]
- Busto R., Dietrich W. D., Globus M. Y., Ginsberg M. D. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett. 1989 Jul 3;101(3):299–304. doi: 10.1016/0304-3940(89)90549-1. [DOI] [PubMed] [Google Scholar]
- Busto R., Dietrich W. D., Globus M. Y., Valdés I., Scheinberg P., Ginsberg M. D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987 Dec;7(6):729–738. doi: 10.1038/jcbfm.1987.127. [DOI] [PubMed] [Google Scholar]
- Busto R., Globus M. Y., Dietrich W. D., Martinez E., Valdés I., Ginsberg M. D. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989 Jul;20(7):904–910. doi: 10.1161/01.str.20.7.904. [DOI] [PubMed] [Google Scholar]
- Carroll M., Beek O. Protection against hippocampal CA1 cell loss by post-ischemic hypothermia is dependent on delay of initiation and duration. Metab Brain Dis. 1992 Mar;7(1):45–50. doi: 10.1007/BF01000440. [DOI] [PubMed] [Google Scholar]
- Chopp M., Chen H., Dereski M. O., Garcia J. H. Mild hypothermic intervention after graded ischemic stress in rats. Stroke. 1991 Jan;22(1):37–43. doi: 10.1161/01.str.22.1.37. [DOI] [PubMed] [Google Scholar]
- Coimbra C., Wieloch T. Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia. Acta Neuropathol. 1994;87(4):325–331. doi: 10.1007/BF00313599. [DOI] [PubMed] [Google Scholar]
- Colbourne F., Corbett D. Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil. Brain Res. 1994 Aug 22;654(2):265–272. doi: 10.1016/0006-8993(94)90488-x. [DOI] [PubMed] [Google Scholar]
- Dietrich W. D., Busto R., Alonso O., Globus M. Y., Ginsberg M. D. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab. 1993 Jul;13(4):541–549. doi: 10.1038/jcbfm.1993.71. [DOI] [PubMed] [Google Scholar]
- Edwards A. D., Yue X., Squier M. V., Thoresen M., Cady E. B., Penrice J., Cooper C. E., Wyatt J. S., Reynolds E. O., Mehmet H. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1193–1199. doi: 10.1006/bbrc.1995.2895. [DOI] [PubMed] [Google Scholar]
- Gasser T., Bächer P., Möcks J. Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr Clin Neurophysiol. 1982 Jan;53(1):119–124. doi: 10.1016/0013-4694(82)90112-2. [DOI] [PubMed] [Google Scholar]
- Gunn A. J., Williams C. E., Mallard E. C., Tan W. K., Gluckman P. D. Flunarizine, a calcium channel antagonist, is partially prophylactically neuroprotective in hypoxic-ischemic encephalopathy in the fetal sheep. Pediatr Res. 1994 Jun;35(6):657–663. doi: 10.1203/00006450-199406000-00007. [DOI] [PubMed] [Google Scholar]
- Gunn T. R., Butler J., Gluckman P. Metabolic and hormonal responses to cooling the fetal sheep in utero. J Dev Physiol. 1986 Feb;8(1):55–66. [PubMed] [Google Scholar]
- Gunn T., Outerbridge E. W. Effectiveness of neonatal transport. Can Med Assoc J. 1978 Mar 18;118(6):646–649. [PMC free article] [PubMed] [Google Scholar]
- Illievich U. M., Zornow M. H., Choi K. T., Scheller M. S., Strnat M. A. Effects of hypothermic metabolic suppression on hippocampal glutamate concentrations after transient global cerebral ischemia. Anesth Analg. 1994 May;78(5):905–911. doi: 10.1213/00000539-199405000-00012. [DOI] [PubMed] [Google Scholar]
- Johnson E. M., Jr, Greenlund L. J., Akins P. T., Hsu C. Y. Neuronal apoptosis: current understanding of molecular mechanisms and potential role in ischemic brain injury. J Neurotrauma. 1995 Oct;12(5):843–852. doi: 10.1089/neu.1995.12.843. [DOI] [PubMed] [Google Scholar]
- Johnston B. M., Mallard E. C., Williams C. E., Gluckman P. D. Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. J Clin Invest. 1996 Jan 15;97(2):300–308. doi: 10.1172/JCI118416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karibe H., Chen S. F., Zarow G. J., Gafni J., Graham S. H., Chan P. H., Weinstein P. R. Mild intraischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats. Brain Res. 1994 Jun 27;649(1-2):12–18. doi: 10.1016/0006-8993(94)91043-x. [DOI] [PubMed] [Google Scholar]
- Kristián T., Katsura K., Siesjö B. K. The influence of moderate hypothermia on cellular calcium uptake in complete ischaemia: implications for the excitotoxic hypothesis. Acta Physiol Scand. 1992 Dec;146(4):531–532. doi: 10.1111/j.1748-1716.1992.tb09457.x. [DOI] [PubMed] [Google Scholar]
- Kuboyama K., Safar P., Radovsky A., Tisherman S. A., Stezoski S. W., Alexander H. Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med. 1993 Sep;21(9):1348–1358. doi: 10.1097/00003246-199309000-00019. [DOI] [PubMed] [Google Scholar]
- Laptook A. R., Corbett R. J., Sterett R., Garcia D., Tollefsbol G. Quantitative relationship between brain temperature and energy utilization rate measured in vivo using 31P and 1H magnetic resonance spectroscopy. Pediatr Res. 1995 Dec;38(6):919–925. doi: 10.1203/00006450-199512000-00015. [DOI] [PubMed] [Google Scholar]
- Marks K. A., Mallard E. C., Roberts I., Williams C. E., Sirimanne E. S., Johnston B., Gluckman P. D., Edwards A. D. Delayed vasodilation and altered oxygenation after cerebral ischemia in fetal sheep. Pediatr Res. 1996 Jan;39(1):48–54. doi: 10.1203/00006450-199601000-00007. [DOI] [PubMed] [Google Scholar]
- Nakashima K., Todd M. M., Warner D. S. The relation between cerebral metabolic rate and ischemic depolarization. A comparison of the effects of hypothermia, pentobarbital, and isoflurane. Anesthesiology. 1995 May;82(5):1199–1208. doi: 10.1097/00000542-199505000-00015. [DOI] [PubMed] [Google Scholar]
- Nevander G., Ingvar M., Auer R., Siesjö B. K. Status epilepticus in well-oxygenated rats causes neuronal necrosis. Ann Neurol. 1985 Sep;18(3):281–290. doi: 10.1002/ana.410180303. [DOI] [PubMed] [Google Scholar]
- Palmer A. M., Marion D. W., Botscheller M. L., Redd E. E. Therapeutic hypothermia is cytoprotective without attenuating the traumatic brain injury-induced elevations in interstitial concentrations of aspartate and glutamate. J Neurotrauma. 1993 Winter;10(4):363–372. doi: 10.1089/neu.1993.10.363. [DOI] [PubMed] [Google Scholar]
- Roth S. C., Edwards A. D., Cady E. B., Delpy D. T., Wyatt J. S., Azzopardi D., Baudin J., Townsend J., Stewart A. L., Reynolds E. O. Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol. 1992 Apr;34(4):285–295. doi: 10.1111/j.1469-8749.1992.tb11432.x. [DOI] [PubMed] [Google Scholar]
- Shuaib A., Sochocka E., Code W., Hertz L. Hypothermia protects astrocytes during ischemia in cell culture. Neurosci Lett. 1992 Oct 26;146(1):69–71. doi: 10.1016/0304-3940(92)90174-6. [DOI] [PubMed] [Google Scholar]
- Sirimanne E. S., Blumberg R. M., Bossano D., Gunning M., Edwards A. D., Gluckman P. D., Williams C. E. The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant rat. Pediatr Res. 1996 Apr;39(4 Pt 1):591–597. doi: 10.1203/00006450-199604000-00005. [DOI] [PubMed] [Google Scholar]
- Smith D. C. Effects of skin blood flow and temperature on skin--electrode impedance and offset potential: measurements at low alternating current density. J Med Eng Technol. 1992 May-Jun;16(3):112–116. doi: 10.3109/03091909209021972. [DOI] [PubMed] [Google Scholar]
- Tan W. K., Williams C. E., During M. J., Mallard C. E., Gunning M. I., Gunn A. J., Gluckman P. D. Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury in late gestation fetal sheep. Pediatr Res. 1996 May;39(5):791–797. doi: 10.1203/00006450-199605000-00008. [DOI] [PubMed] [Google Scholar]
- Tan W. K., Williams C. E., Gunn A. J., Mallard C. E., Gluckman P. D. Suppression of postischemic epileptiform activity with MK-801 improves neural outcome in fetal sheep. Ann Neurol. 1992 Nov;32(5):677–682. doi: 10.1002/ana.410320511. [DOI] [PubMed] [Google Scholar]
- Thoresen M., Penrice J., Lorek A., Cady E. B., Wylezinska M., Kirkbride V., Cooper C. E., Brown G. C., Edwards A. D., Wyatt J. S. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res. 1995 May;37(5):667–670. doi: 10.1203/00006450-199505000-00019. [DOI] [PubMed] [Google Scholar]
- Williams C. E., Gunn A., Gluckman P. D. Time course of intracellular edema and epileptiform activity following prenatal cerebral ischemia in sheep. Stroke. 1991 Apr;22(4):516–521. doi: 10.1161/01.str.22.4.516. [DOI] [PubMed] [Google Scholar]
- Yager J., Towfighi J., Vannucci R. C. Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat. Pediatr Res. 1993 Oct;34(4):525–529. doi: 10.1203/00006450-199310000-00029. [DOI] [PubMed] [Google Scholar]
- van Bel F., Roman C., Klautz R. J., Teitel D. F., Rudolph A. M. Relationship between brain blood flow and carotid arterial flow in the sheep fetus. Pediatr Res. 1994 Mar;35(3):329–333. doi: 10.1203/00006450-199403000-00011. [DOI] [PubMed] [Google Scholar]