Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jan 15;99(2):267–277. doi: 10.1172/JCI119155

Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia.

P G Gallagher 1, M J Petruzzi 1, S A Weed 1, Z Zhang 1, S L Marchesi 1, N Mohandas 1, J S Morrow 1, B G Forget 1
PMCID: PMC507794  PMID: 9005995

Abstract

We studied an infant with severe nonimmune hemolytic anemia and hydrops fetalis at birth. His neonatal course was marked by ongoing hemolysis of undetermined etiology requiring repeated erythrocyte transfusions. He has remained transfusion-dependent for more than 2 yr. A previous sibling born with hemolytic anemia and hydrops fetalis died on the second day of life. Peripheral blood smears from the parents revealed rare elliptocytes. Examination of their erythrocyte membranes revealed abnormal mechanical stability as well as structural and functional abnormalities in spectrin. Genetic studies revealed that the proband and his deceased sister were homozygous for a mutation of betaIsigma1 spectrin, L2025R, in a region of spectrin that is critical for normal function. The importance of leucine in this position of the proposed triple helical model of spectrin repeats is highlighted by its evolutionary conservation in all beta spectrins from Drosophila to humans. Molecular modeling demonstrated the disruption of hydrophobic interactions in the interior of the triple helix critical for spectrin function caused by the replacement of the hydrophobic, uncharged leucine by a hydrophilic, positively charged arginine. This mutation must also be expressed in the betaIsigma2 spectrin found in muscle, yet pathologic and immunohistochemical examination of skeletal muscle from the deceased sibling was unremarkable.

Full Text

The Full Text of this article is available as a PDF (699.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Casella J. F., Zinkham W. H., McMillan C., Bennett V. Partial deficiency of erythrocyte spectrin in hereditary spherocytosis. 1985 Mar 28-Apr 3Nature. 314(6009):380–383. doi: 10.1038/314380a0. [DOI] [PubMed] [Google Scholar]
  2. Agre P., Orringer E. P., Bennett V. Deficient red-cell spectrin in severe, recessively inherited spherocytosis. N Engl J Med. 1982 May 13;306(19):1155–1161. doi: 10.1056/NEJM198205133061906. [DOI] [PubMed] [Google Scholar]
  3. Amin K. M., Scarpa A. L., Winkelmann J. C., Curtis P. J., Forget B. G. The exon-intron organization of the human erythroid beta-spectrin gene. Genomics. 1993 Oct;18(1):118–125. doi: 10.1006/geno.1993.1434. [DOI] [PubMed] [Google Scholar]
  4. Arcasoy M. O., Gallagher P. G. Hematologic disorders and nonimmune hydrops fetalis. Semin Perinatol. 1995 Dec;19(6):502–515. doi: 10.1016/s0146-0005(05)80057-6. [DOI] [PubMed] [Google Scholar]
  5. Bloom M. L., Birkenmeier C. S., Barker J. E. Complete nucleotide sequence of the murine erythroid beta-spectrin cDNA and tissue-specific expression in normal and jaundiced mice. Blood. 1993 Nov 1;82(9):2906–2914. [PubMed] [Google Scholar]
  6. Byers T. J., Brandin E., Lue R. A., Winograd E., Branton D. The complete sequence of Drosophila beta-spectrin reveals supra-motifs comprising eight 106-residue segments. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6187–6191. doi: 10.1073/pnas.89.13.6187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark M. B., Ma Y., Bloom M. L., Barker J. E., Zagon I. S., Zimmer W. E., Goodman S. R. Brain alpha erythroid spectrin: identification, compartmentalization, and beta spectrin associations. Brain Res. 1994 Nov 14;663(2):223–236. doi: 10.1016/0006-8993(94)91267-x. [DOI] [PubMed] [Google Scholar]
  8. Coetzer T. L., Lawler J., Liu S. C., Prchal J. T., Gualtieri R. J., Brain M. C., Dacie J. V., Palek J. Partial ankyrin and spectrin deficiency in severe, atypical hereditary spherocytosis. N Engl J Med. 1988 Jan 28;318(4):230–234. doi: 10.1056/NEJM198801283180407. [DOI] [PubMed] [Google Scholar]
  9. Coetzer T., Palek J., Lawler J., Liu S. C., Jarolim P., Lahav M., Prchal J. T., Wang W., Alter B. P., Schewitz G. Structural and functional heterogeneity of alpha spectrin mutations involving the spectrin heterodimer self-association site: relationships to hematologic expression of homozygous hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood. 1990 Jun 1;75(11):2235–2244. [PubMed] [Google Scholar]
  10. Delaunay J., Dhermy D. Mutations involving the spectrin heterodimer contact site: clinical expression and alterations in specific function. Semin Hematol. 1993 Jan;30(1):21–33. [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dhermy D., Garbarz M., Lecomte M. C., Féo C., Bournier O., Chaveroche I., Gautero H., Galand C., Boivin P. Hereditary elliptocytosis: clinical, morphological and biochemical studies of 38 cases. Nouv Rev Fr Hematol. 1986;28(3):129–140. [PubMed] [Google Scholar]
  13. Dhermy D. The spectrin super-family. Biol Cell. 1991;71(3):249–254. [PubMed] [Google Scholar]
  14. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  15. Gallagher P. G., Lecomte M. C., Galand C., Wang Y. P., Tse W. T., Forget B. G. Location and PCR-based detection of three polymorphisms of the human erythrocyte beta-spectrin gene (SPTB). Br J Haematol. 1994 Oct;88(2):413–414. doi: 10.1111/j.1365-2141.1994.tb05043.x. [DOI] [PubMed] [Google Scholar]
  16. Gallagher P. G., Tse W. T., Coetzer T., Lecomte M. C., Garbarz M., Zarkowsky H. S., Baruchel A., Ballas S. K., Dhermy D., Palek J. A common type of the spectrin alpha I 46-50a-kD peptide abnormality in hereditary elliptocytosis and pyropoikilocytosis is associated with a mutation distant from the proteolytic cleavage site. Evidence for the functional importance of the triple helical model of spectrin. J Clin Invest. 1992 Mar;89(3):892–898. doi: 10.1172/JCI115669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gallagher P. G., Weed S. A., Tse W. T., Benoit L., Morrow J. S., Marchesi S. L., Mohandas N., Forget B. G. Recurrent fatal hydrops fetalis associated with a nucleotide substitution in the erythrocyte beta-spectrin gene. J Clin Invest. 1995 Mar;95(3):1174–1182. doi: 10.1172/JCI117766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hu R. J., Watanabe M., Bennett V. Characterization of human brain cDNA encoding the general isoform of beta-spectrin. J Biol Chem. 1992 Sep 15;267(26):18715–18722. [PubMed] [Google Scholar]
  19. Iarocci T. A., Wagner G. M., Mohandas N., Lane P. A., Mentzer W. C. Hereditary poikilocytic anemia associated with the co-inheritance of two alpha spectrin abnormalities. Blood. 1988 May;71(5):1390–1396. [PubMed] [Google Scholar]
  20. Johnson R. M. The kinetics of resealing of washed erythrocyte ghosts. J Membr Biol. 1975 Jul 24;22(3-4):231–253. doi: 10.1007/BF01868173. [DOI] [PubMed] [Google Scholar]
  21. Kennedy S. P., Weed S. A., Forget B. G., Morrow J. S. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. J Biol Chem. 1994 Apr 15;269(15):11400–11408. [PubMed] [Google Scholar]
  22. Kiyabu M. T., Shibata D., Arnheim N., Martin W. J., Fitzgibbons P. L. Detection of human papillomavirus in formalin-fixed, invasive squamous carcinomas using the polymerase chain reaction. Am J Surg Pathol. 1989 Mar;13(3):221–224. doi: 10.1097/00000478-198903000-00007. [DOI] [PubMed] [Google Scholar]
  23. Knowles W. J., Morrow J. S., Speicher D. W., Zarkowsky H. S., Mohandas N., Mentzer W. C., Shohet S. B., Marchesi V. T. Molecular and functional changes in spectrin from patients with hereditary pyropoikilocytosis. J Clin Invest. 1983 Jun;71(6):1867–1877. doi: 10.1172/JCI110942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kotula L., DeSilva T. M., Speicher D. W., Curtis P. J. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site. J Biol Chem. 1993 Jul 15;268(20):14788–14793. [PubMed] [Google Scholar]
  25. Liu S. C., Palek J., Prchal J. T. Defective spectrin dimer-dimer association with hereditary elliptocytosis. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2072–2076. doi: 10.1073/pnas.79.6.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lombardo C. R., Weed S. A., Kennedy S. P., Forget B. G., Morrow J. S. Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2- and COOH-terminal membrane association domains (MAD1 and MAD2). J Biol Chem. 1994 Nov 18;269(46):29212–29219. [PubMed] [Google Scholar]
  27. Ma Y., Zimmer W. E., Riederer B. M., Bloom M. L., Barker J. E., Goodman S. M., Goodman S. R. The complete amino acid sequence for brain beta spectrin (beta fodrin): relationship to globin sequences. Brain Res Mol Brain Res. 1993 Apr;18(1-2):87–99. doi: 10.1016/0169-328x(93)90176-p. [DOI] [PubMed] [Google Scholar]
  28. Malchiodi-Albedi F., Ceccarini M., Winkelmann J. C., Morrow J. S., Petrucci T. C. The 270 kDa splice variant of erythrocyte beta-spectrin (beta I sigma 2) segregates in vivo and in vitro to specific domains of cerebellar neurons. J Cell Sci. 1993 Sep;106(Pt 1):67–78. doi: 10.1242/jcs.106.1.67. [DOI] [PubMed] [Google Scholar]
  29. Marchesi S. L., Knowles W. J., Morrow J. S., Bologna M., Marchesi V. T. Abnormal spectrin in hereditary elliptocytosis. Blood. 1986 Jan;67(1):141–151. [PubMed] [Google Scholar]
  30. Marchesi S. L., Letsinger J. T., Speicher D. W., Marchesi V. T., Agre P., Hyun B., Gulati G. Mutant forms of spectrin alpha-subunits in hereditary elliptocytosis. J Clin Invest. 1987 Jul;80(1):191–198. doi: 10.1172/JCI113047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McCann S. R., Jacob H. S. Spinal cord disease in hereditary spherocytosis: report of two cases with a hypothesized common mechanism for neurologic and red cell abnormalities. Blood. 1976 Aug;48(2):259–263. [PubMed] [Google Scholar]
  32. Mohandas N., Clark M. R., Health B. P., Rossi M., Wolfe L. C., Lux S. E., Shohet S. B. A technique to detect reduced mechanical stability of red cell membranes: relevance to elliptocytic disorders. Blood. 1982 Apr;59(4):768–774. [PubMed] [Google Scholar]
  33. Moiseyev V. S., Korovina E. A., Polotskaya E. L., Poliyanskaya I. S., Yazdovsky V. V. Hypertrophic cardiomyopathy associated with hereditary spherocytosis in three generations of one family. Lancet. 1987 Oct 10;2(8563):853–854. doi: 10.1016/s0140-6736(87)91037-3. [DOI] [PubMed] [Google Scholar]
  34. Morrow J. S., Speicher D. W., Knowles W. J., Hsu C. J., Marchesi V. T. Identification of functional domains of human erythrocyte spectrin. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6592–6596. doi: 10.1073/pnas.77.11.6592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Norton A. J., Jordan S., Yeomans P. Brief, high-temperature heat denaturation (pressure cooking): a simple and effective method of antigen retrieval for routinely processed tissues. J Pathol. 1994 Aug;173(4):371–379. doi: 10.1002/path.1711730413. [DOI] [PubMed] [Google Scholar]
  36. Porter G. A., Dmytrenko G. M., Winkelmann J. C., Bloch R. J. Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol. 1992 Jun;117(5):997–1005. doi: 10.1083/jcb.117.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sahr K. E., Coetzer T. L., Moy L. S., Derick L. H., Chishti A. H., Jarolim P., Lorenzo F., Miraglia del Giudice E., Iolascon A., Gallanello R. Spectrin cagliari. an Ala-->Gly substitution in helix 1 of beta spectrin repeat 17 that severely disrupts the structure and self-association of the erythrocyte spectrin heterodimer. J Biol Chem. 1993 Oct 25;268(30):22656–22662. [PubMed] [Google Scholar]
  38. Sahr K. E., Tobe T., Scarpa A., Laughinghouse K., Marchesi S. L., Agre P., Linnenbach A. J., Marchesi V. T., Forget B. G. Sequence and exon-intron organization of the DNA encoding the alpha I domain of human spectrin. Application to the study of mutations causing hereditary elliptocytosis. J Clin Invest. 1989 Oct;84(4):1243–1252. doi: 10.1172/JCI114291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Speicher D. W., DeSilva T. M., Speicher K. D., Ursitti J. A., Hembach P., Weglarz L. Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting. J Biol Chem. 1993 Feb 25;268(6):4227–4235. [PubMed] [Google Scholar]
  40. Speicher D. W., Marchesi V. T. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature. 1984 Sep 13;311(5982):177–180. doi: 10.1038/311177a0. [DOI] [PubMed] [Google Scholar]
  41. Speicher D. W., Morrow J. S., Knowles W. J., Marchesi V. T. A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains. J Biol Chem. 1982 Aug 10;257(15):9093–9101. [PubMed] [Google Scholar]
  42. Speicher D. W., Morrow J. S., Knowles W. J., Marchesi V. T. Identification of proteolytically resistant domains of human erythrocyte spectrin. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5673–5677. doi: 10.1073/pnas.77.10.5673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Spencer S. E., Walker F. O., Moore S. A. Chorea-amyotrophy with chronic hemolytic anemia: a variant of chorea-amyotrophy with acanthocytosis. Neurology. 1987 Apr;37(4):645–649. doi: 10.1212/wnl.37.4.645. [DOI] [PubMed] [Google Scholar]
  44. Tan S., Shankar V., Gilmore M. S., Sachdev G. P. Nucleotide sequence of a cDNA for canine beta-spectrin reveals high evolutionary conservation. Biochim Biophys Acta. 1993 Feb 20;1172(1-2):217–219. doi: 10.1016/0167-4781(93)90299-s. [DOI] [PubMed] [Google Scholar]
  45. Tse W. T., Lecomte M. C., Costa F. F., Garbarz M., Feo C., Boivin P., Dhermy D., Forget B. G. Point mutation in the beta-spectrin gene associated with alpha I/74 hereditary elliptocytosis. Implications for the mechanism of spectrin dimer self-association. J Clin Invest. 1990 Sep;86(3):909–916. doi: 10.1172/JCI114792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ungewickell E., Gratzer W. Self-association of human spectrin. A thermodynamic and kinetic study. Eur J Biochem. 1978 Aug 1;88(2):379–385. doi: 10.1111/j.1432-1033.1978.tb12459.x. [DOI] [PubMed] [Google Scholar]
  47. Weed S. A., Stabach P. R., Oyer C. E., Gallagher P. G., Morrow J. S. The lethal hemolytic mutation in beta I sigma 2 spectrin Providence yields a null phenotype in neonatal skeletal muscle. Lab Invest. 1996 Jun;74(6):1117–1129. [PubMed] [Google Scholar]
  48. Whitfield C. F., Follweiler J. B., Lopresti-Morrow L., Miller B. A. Deficiency of alpha-spectrin synthesis in burst-forming units-erythroid in lethal hereditary spherocytosis. Blood. 1991 Dec 1;78(11):3043–3051. [PubMed] [Google Scholar]
  49. Winkelmann J. C., Chang J. G., Tse W. T., Scarpa A. L., Marchesi V. T., Forget B. G. Full-length sequence of the cDNA for human erythroid beta-spectrin. J Biol Chem. 1990 Jul 15;265(20):11827–11832. [PubMed] [Google Scholar]
  50. Winkelmann J. C., Costa F. F., Linzie B. L., Forget B. G. Beta spectrin in human skeletal muscle. Tissue-specific differential processing of 3' beta spectrin pre-mRNA generates a beta spectrin isoform with a unique carboxyl terminus. J Biol Chem. 1990 Nov 25;265(33):20449–20454. [PubMed] [Google Scholar]
  51. Winkelmann J. C., Forget B. G. Erythroid and nonerythroid spectrins. Blood. 1993 Jun 15;81(12):3173–3185. [PubMed] [Google Scholar]
  52. Winkelmann J. C., Leto T. L., Watkins P. C., Eddy R., Shows T. B., Linnenbach A. J., Sahr K. E., Kathuria N., Marchesi V. T., Forget B. G. Molecular cloning of the cDNA for human erythrocyte beta-spectrin. Blood. 1988 Jul;72(1):328–334. [PubMed] [Google Scholar]
  53. Yan Y., Winograd E., Viel A., Cronin T., Harrison S. C., Branton D. Crystal structure of the repetitive segments of spectrin. Science. 1993 Dec 24;262(5142):2027–2030. doi: 10.1126/science.8266097. [DOI] [PubMed] [Google Scholar]
  54. Younes M., Harris A. S., Morrow J. S. Fodrin as a differentiation marker. Redistributions in colonic neoplasia. Am J Pathol. 1989 Dec;135(6):1197–1212. [PMC free article] [PubMed] [Google Scholar]
  55. Zimmer W. E., Ma Y. P., Goodman S. R. Identification of a mouse brain beta-spectrin cDNA and distribution of its mRNA in adult tissues. Brain Res Bull. 1991 Aug;27(2):187–193. doi: 10.1016/0361-9230(91)90066-s. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES