Abstract
The long-term administration of N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthesis, produces coronary vascular remodeling and myocardial hypertrophy in animals. This study used a rat model to investigate the role of angiotensin I converting enzyme (ACE) in the pathogenesis of such changes. We studied the following groups, all of which received drug treatment in their drinking water: untreated controls, and those administered L-NAME, L-NAME, and an ACE inhibitor (ACEI), and L-NAME and hydralazine. Cardiovascular structural changes and tissue ACE activities were evaluated after the first, fourth, and eighth week of treatment. In rats treated with L-NAME alone, vascular remodeling was evident at the fourth and eighth week, and myocardial hypertrophy was present at the eighth week of treatment. The vascular and myocardial remodeling were characterized by increased tissue ACE activities and immunodetectable ACE in those tissues. These changes were markedly reduced by ACEI, but not by hydralazine treatment. Increased local ACE expression may thus be important in the pathogenesis of cardiovascular remodeling in this model.
Full Text
The Full Text of this article is available as a PDF (561.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anversa P., Loud A. V., Giacomelli F., Wiener J. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab Invest. 1978 May;38(5):597–609. [PubMed] [Google Scholar]
- Arnal J. F., Warin L., Michel J. B. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Invest. 1992 Aug;90(2):647–652. doi: 10.1172/JCI115906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnal J. F., el Amrani A. I., Chatellier G., Ménard J., Michel J. B. Cardiac weight in hypertension induced by nitric oxide synthase blockade. Hypertension. 1993 Sep;22(3):380–387. doi: 10.1161/01.hyp.22.3.380. [DOI] [PubMed] [Google Scholar]
- Bank N., Aynedjian H. S., Khan G. A. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension. 1994 Sep;24(3):322–328. doi: 10.1161/01.hyp.24.3.322. [DOI] [PubMed] [Google Scholar]
- Baylis C., Mitruka B., Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest. 1992 Jul;90(1):278–281. doi: 10.1172/JCI115849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cayatte A. J., Palacino J. J., Horten K., Cohen R. A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994 May;14(5):753–759. doi: 10.1161/01.atv.14.5.753. [DOI] [PubMed] [Google Scholar]
- Cheung H. S., Cushman D. W. Inhibition of homogeneous angiotensin-converting enzyme of rabbit lung by synthetic venom peptides of Bothrops jararaca. Biochim Biophys Acta. 1973 Feb 15;293(2):451–463. doi: 10.1016/0005-2744(73)90352-5. [DOI] [PubMed] [Google Scholar]
- Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dzau V. J., Gibbons G. H. Endothelium and growth factors in vascular remodeling of hypertension. Hypertension. 1991 Nov;18(5 Suppl):III115–III121. doi: 10.1161/01.hyp.18.5_suppl.iii115. [DOI] [PubMed] [Google Scholar]
- Egashira K., Hirooka Y., Kuga T., Mohri M., Takeshita A. Effects of L-arginine supplementation on endothelium-dependent coronary vasodilation in patients with angina pectoris and normal coronary arteriograms. Circulation. 1996 Jul 15;94(2):130–134. doi: 10.1161/01.cir.94.2.130. [DOI] [PubMed] [Google Scholar]
- Egashira K., Inou T., Hirooka Y., Yamada A., Maruoka Y., Kai H., Sugimachi M., Suzuki S., Takeshita A. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest. 1993 Jan;91(1):29–37. doi: 10.1172/JCI116183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egashira K., Inou T., Hirooka Y., Yamada A., Maruoka Y., Kai H., Sugimachi M., Suzuki S., Takeshita A. Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions. J Clin Invest. 1993 Jan;91(1):29–37. doi: 10.1172/JCI116183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egashira K., Inou T., Hirooka Y., Yamada A., Urabe Y., Takeshita A. Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms. N Engl J Med. 1993 Jun 10;328(23):1659–1664. doi: 10.1056/NEJM199306103282302. [DOI] [PubMed] [Google Scholar]
- Farhy R. D., Carretero O. A., Ho K. L., Scicli A. G. Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ Res. 1993 Jun;72(6):1202–1210. doi: 10.1161/01.res.72.6.1202. [DOI] [PubMed] [Google Scholar]
- Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989 May;83(5):1774–1777. doi: 10.1172/JCI114081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons G. H., Pratt R. E., Dzau V. J. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest. 1992 Aug;90(2):456–461. doi: 10.1172/JCI115881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi K., Nunami K., Kato J., Yoneda N., Kubo M., Ochiai T., Ishida R. Studies on angiotensin converting enzyme inhibitors. 4. Synthesis and angiotensin converting enzyme inhibitory activities of 3-acyl-1-alkyl-2-oxoimidazolidine-4-carboxylic acid derivatives. J Med Chem. 1989 Feb;32(2):289–297. doi: 10.1021/jm00122a003. [DOI] [PubMed] [Google Scholar]
- Hirsch A. T., Talsness C. E., Schunkert H., Paul M., Dzau V. J. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res. 1991 Aug;69(2):475–482. doi: 10.1161/01.res.69.2.475. [DOI] [PubMed] [Google Scholar]
- Hou J., Kato H., Cohen R. A., Chobanian A. V., Brecher P. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest. 1995 Nov;96(5):2469–2477. doi: 10.1172/JCI118305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito A., Egashira K., Kadokami T., Fukumoto Y., Takayanagi T., Nakaike R., Kuga T., Sueishi K., Shimokawa H., Takeshita A. Chronic inhibition of endothelium-derived nitric oxide synthesis causes coronary microvascular structural changes and hyperreactivity to serotonin in pigs. Circulation. 1995 Nov 1;92(9):2636–2644. doi: 10.1161/01.cir.92.9.2636. [DOI] [PubMed] [Google Scholar]
- Itoh H., Mukoyama M., Pratt R. E., Gibbons G. H., Dzau V. J. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest. 1993 May;91(5):2268–2274. doi: 10.1172/JCI116454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadokami T., Egashira K., Kuwata K., Fukumoto Y., Kozai T., Yasutake H., Kuga T., Shimokawa H., Sueishi K., Takeshita A. Altered serotonin receptor subtypes mediate coronary microvascular hyperreactivity in pigs with chronic inhibition of nitric oxide synthesis. Circulation. 1996 Jul 15;94(2):182–189. doi: 10.1161/01.cir.94.2.182. [DOI] [PubMed] [Google Scholar]
- Kaski J. C., Rosano G., Gavrielides S., Chen L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol. 1994 Mar 1;23(3):652–657. doi: 10.1016/0735-1097(94)90750-1. [DOI] [PubMed] [Google Scholar]
- Kourembanas S., McQuillan L. P., Leung G. K., Faller D. V. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest. 1993 Jul;92(1):99–104. doi: 10.1172/JCI116604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo L., Davis M. J., Cannon M. S., Chilian W. M. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-arginine. Circ Res. 1992 Mar;70(3):465–476. doi: 10.1161/01.res.70.3.465. [DOI] [PubMed] [Google Scholar]
- Loud A. V., Anversa P., Giacomelli F., Wiener J. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. I. Determination of myocyte size. Lab Invest. 1978 May;38(5):586–596. [PubMed] [Google Scholar]
- Maseri A., Crea F., Kaski J. C., Crake T. Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol. 1991 Feb;17(2):499–506. doi: 10.1016/s0735-1097(10)80122-6. [DOI] [PubMed] [Google Scholar]
- McNamara D. B., Bedi B., Aurora H., Tena L., Ignarro L. J., Kadowitz P. J., Akers D. L. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem Biophys Res Commun. 1993 May 28;193(1):291–296. doi: 10.1006/bbrc.1993.1622. [DOI] [PubMed] [Google Scholar]
- Michel J. B., Xu Y., Blot S., Philippe M., Chatellier G. Improved survival in rats administered NG-nitro L-arginine methyl ester due to converting enzyme inhibition. J Cardiovasc Pharmacol. 1996 Jul;28(1):142–148. doi: 10.1097/00005344-199607000-00021. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Mosseri M., Yarom R., Gotsman M. S., Hasin Y. Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation. 1986 Nov;74(5):964–972. doi: 10.1161/01.cir.74.5.964. [DOI] [PubMed] [Google Scholar]
- Myers P. R., Minor R. L., Jr, Guerra R., Jr, Bates J. N., Harrison D. G. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature. 1990 May 10;345(6271):161–163. doi: 10.1038/345161a0. [DOI] [PubMed] [Google Scholar]
- Naftilan A. J., Pratt R. E., Dzau V. J. Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest. 1989 Apr;83(4):1419–1424. doi: 10.1172/JCI114032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Numaguchi K., Egashira K., Takemoto M., Kadokami T., Shimokawa H., Sueishi K., Takeshita A. Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats. Hypertension. 1995 Dec;26(6 Pt 1):957–962. doi: 10.1161/01.hyp.26.6.957. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Ribeiro M. O., Antunes E., de Nucci G., Lovisolo S. M., Zatz R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension. 1992 Sep;20(3):298–303. doi: 10.1161/01.hyp.20.3.298. [DOI] [PubMed] [Google Scholar]
- Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
- Schieffer B., Wirger A., Meybrunn M., Seitz S., Holtz J., Riede U. N., Drexler H. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation. 1994 May;89(5):2273–2282. doi: 10.1161/01.cir.89.5.2273. [DOI] [PubMed] [Google Scholar]
- Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schunkert H., Ingelfinger J. R., Hirsch A. T., Tang S. S., Litwin S. E., Talsness C. E., Dzau V. J. Evidence for tissue-specific activation of renal angiotensinogen mRNA expression in chronic stable experimental heart failure. J Clin Invest. 1992 Oct;90(4):1523–1529. doi: 10.1172/JCI116020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigusch H. H., Campbell S. E., Weber K. T. Angiotensin II-induced myocardial fibrosis in rats: role of nitric oxide, prostaglandins and bradykinin. Cardiovasc Res. 1996 Apr;31(4):546–554. [PubMed] [Google Scholar]
- Swedberg K., Held P., Kjekshus J., Rasmussen K., Rydén L., Wedel H. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II) N Engl J Med. 1992 Sep 3;327(10):678–684. doi: 10.1056/NEJM199209033271002. [DOI] [PubMed] [Google Scholar]
- Weinberg E. O., Schoen F. J., George D., Kagaya Y., Douglas P. S., Litwin S. E., Schunkert H., Benedict C. R., Lorell B. H. Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation. 1994 Sep;90(3):1410–1422. doi: 10.1161/01.cir.90.3.1410. [DOI] [PubMed] [Google Scholar]
- Zeiher A. M., Drexler H., Saurbier B., Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest. 1993 Aug;92(2):652–662. doi: 10.1172/JCI116634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von der Leyen H. E., Gibbons G. H., Morishita R., Lewis N. P., Zhang L., Nakajima M., Kaneda Y., Cooke J. P., Dzau V. J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1137–1141. doi: 10.1073/pnas.92.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]