Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Jan 15;99(2):288–296. doi: 10.1172/JCI119157

Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes.

M H Drazner 1, K C Peppel 1, S Dyer 1, A O Grant 1, W J Koch 1, R J Lefkowitz 1
PMCID: PMC507796  PMID: 9005997

Abstract

Our laboratory has been testing the hypothesis that genetic modulation of the beta-adrenergic signaling cascade can enhance cardiac function. We have previously shown that transgenic mice with cardiac overexpression of either the human beta2-adrenergic receptor (beta2AR) or an inhibitor of the beta-adrenergic receptor kinase (betaARK), an enzyme that phosphorylates and uncouples agonist-bound receptors, have increased myocardial inotropy. We now have created recombinant adenoviruses encoding either the beta2AR (Adeno-beta2AR) or a peptide betaARK inhibitor (consisting of the carboxyl terminus of betaARK1, Adeno-betaARKct) and tested their ability to potentiate beta-adrenergic signaling in cultured adult rabbit ventricular myocytes. As assessed by radioligand binding, Adeno-beta2AR infection led to approximately 20-fold overexpression of beta-adrenergic receptors. Protein immunoblots demonstrated the presence of the Adeno-betaARKct transgene. Both transgenes significantly increased isoproterenol-stimulated cAMP as compared to myocytes infected with an adenovirus encoding beta-galactosidase (Adeno-betaGal) but did not affect the sarcolemmal adenylyl cyclase response to Forskolin or NaF. beta-Adrenergic agonist-induced desensitization was significantly inhibited in Adeno-betaARKct-infected myocytes (16+/-2%) as compared to Adeno-betaGal-infected myocytes (37+/-1%, P < 0.001). We conclude that recombinant adenoviral gene transfer of the beta2AR or an inhibitor of betaARK-mediated desensitization can potentiate beta-adrenergic signaling.

Full Text

The Full Text of this article is available as a PDF (368.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuld R. A., Starling R. C., Hamlin R. L., Billman G. E., Hensley J., Castillo L., Fertel R. H., Hohl C. M., Robitaille P. M., Jones L. R. Response of failing canine and human heart cells to beta 2-adrenergic stimulation. Circulation. 1995 Sep 15;92(6):1612–1618. doi: 10.1161/01.cir.92.6.1612. [DOI] [PubMed] [Google Scholar]
  2. Andersson S., Davis D. L., Dahlbäck H., Jörnvall H., Russell D. W. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem. 1989 May 15;264(14):8222–8229. [PubMed] [Google Scholar]
  3. Barr E., Carroll J., Kalynych A. M., Tripathy S. K., Kozarsky K., Wilson J. M., Leiden J. M. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus. Gene Ther. 1994 Jan;1(1):51–58. [PubMed] [Google Scholar]
  4. Benovic J. L., Strasser R. H., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc Natl Acad Sci U S A. 1986 May;83(9):2797–2801. doi: 10.1073/pnas.83.9.2797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  7. Bristow M. R., Ginsburg R., Umans V., Fowler M., Minobe W., Rasmussen R., Zera P., Menlove R., Shah P., Jamieson S. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986 Sep;59(3):297–309. doi: 10.1161/01.res.59.3.297. [DOI] [PubMed] [Google Scholar]
  8. Bristow M. R., Minobe W. A., Raynolds M. V., Port J. D., Rasmussen R., Ray P. E., Feldman A. M. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest. 1993 Dec;92(6):2737–2745. doi: 10.1172/JCI116891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brodde O. E. Beta-adrenoceptors in cardiac disease. Pharmacol Ther. 1993 Dec;60(3):405–430. doi: 10.1016/0163-7258(93)90030-h. [DOI] [PubMed] [Google Scholar]
  10. Davies C. H., Davia K., Bennett J. G., Pepper J. R., Poole-Wilson P. A., Harding S. E. Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation. 1995 Nov 1;92(9):2540–2549. doi: 10.1161/01.cir.92.9.2540. [DOI] [PubMed] [Google Scholar]
  11. Freedman N. J., Liggett S. B., Drachman D. E., Pei G., Caron M. G., Lefkowitz R. J. Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. J Biol Chem. 1995 Jul 28;270(30):17953–17961. doi: 10.1074/jbc.270.30.17953. [DOI] [PubMed] [Google Scholar]
  12. Gerdes A. M., Kriseman J., Bishop S. P. Morphometric study of cardiac muscle: the problem of tissue shrinkage. Lab Invest. 1982 Mar;46(3):271–274. [PubMed] [Google Scholar]
  13. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  14. Grant A. O., Dietz M. A., Gilliam F. R., 3rd, Starmer C. F. Blockade of cardiac sodium channels by lidocaine. Single-channel analysis. Circ Res. 1989 Nov;65(5):1247–1262. doi: 10.1161/01.res.65.5.1247. [DOI] [PubMed] [Google Scholar]
  15. Hartzell H. C., Méry P. F., Fischmeister R., Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature. 1991 Jun 13;351(6327):573–576. doi: 10.1038/351573a0. [DOI] [PubMed] [Google Scholar]
  16. Kass-Eisler A., Falck-Pedersen E., Alvira M., Rivera J., Buttrick P. M., Wittenberg B. A., Cipriani L., Leinwand L. A. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11498–11502. doi: 10.1073/pnas.90.24.11498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kirshenbaum L. A., MacLellan W. R., Mazur W., French B. A., Schneider M. D. Highly efficient gene transfer into adult ventricular myocytes by recombinant adenovirus. J Clin Invest. 1993 Jul;92(1):381–387. doi: 10.1172/JCI116577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koch W. J., Hawes B. E., Inglese J., Luttrell L. M., Lefkowitz R. J. Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates G beta gamma-mediated signaling. J Biol Chem. 1994 Feb 25;269(8):6193–6197. [PubMed] [Google Scholar]
  19. Koch W. J., Inglese J., Stone W. C., Lefkowitz R. J. The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem. 1993 Apr 15;268(11):8256–8260. [PubMed] [Google Scholar]
  20. Koch W. J., Rockman H. A., Samama P., Hamilton R. A., Bond R. A., Milano C. A., Lefkowitz R. J. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995 Jun 2;268(5215):1350–1353. doi: 10.1126/science.7761854. [DOI] [PubMed] [Google Scholar]
  21. Kolls J., Peppel K., Silva M., Beutler B. Prolonged and effective blockade of tumor necrosis factor activity through adenovirus-mediated gene transfer. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):215–219. doi: 10.1073/pnas.91.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mann D. L., Kent R. L., Parsons B., Cooper G., 4th Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation. 1992 Feb;85(2):790–804. doi: 10.1161/01.cir.85.2.790. [DOI] [PubMed] [Google Scholar]
  23. Milano C. A., Allen L. F., Rockman H. A., Dolber P. C., McMinn T. R., Chien K. R., Johnson T. D., Bond R. A., Lefkowitz R. J. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science. 1994 Apr 22;264(5158):582–586. doi: 10.1126/science.8160017. [DOI] [PubMed] [Google Scholar]
  24. Nair L. A., Inglese J., Stoffel R., Koch W. J., Lefkowitz R. J., Kwatra M. M., Grant A. O. Cardiac muscarinic potassium channel activity is attenuated by inhibitors of G beta gamma. Circ Res. 1995 May;76(5):832–838. doi: 10.1161/01.res.76.5.832. [DOI] [PubMed] [Google Scholar]
  25. Novotny J., Gustafson B., Kvapil P., Ransnäs L. A. Adenovirus infection of myocardial cells induces an enhanced sensitivity to beta-adrenergic agonists by increasing the concentration of the stimulatory G-protein. Biochem Mol Biol Int. 1994 Nov;34(5):993–1001. [PubMed] [Google Scholar]
  26. Rapundalo S. T., Solaro R. J., Kranias E. G. Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: comparison of cyclic AMP levels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins. Circ Res. 1989 Jan;64(1):104–111. doi: 10.1161/01.res.64.1.104. [DOI] [PubMed] [Google Scholar]
  27. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  28. Shih M., Malbon C. C. Oligodeoxynucleotides antisense to mRNA encoding protein kinase A, protein kinase C, and beta-adrenergic receptor kinase reveal distinctive cell-type-specific roles in agonist-induced desensitization. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12193–12197. doi: 10.1073/pnas.91.25.12193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Touhara K., Koch W. J., Hawes B. E., Lefkowitz R. J. Mutational analysis of the pleckstrin homology domain of the beta-adrenergic receptor kinase. Differential effects on G beta gamma and phosphatidylinositol 4,5-bisphosphate binding. J Biol Chem. 1995 Jul 14;270(28):17000–17005. doi: 10.1074/jbc.270.28.17000. [DOI] [PubMed] [Google Scholar]
  30. Turki J., Lorenz J. N., Green S. A., Donnelly E. T., Jacinto M., Liggett S. B. Myocardial signaling defects and impaired cardiac function of a human beta 2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10483–10488. doi: 10.1073/pnas.93.19.10483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ungerer M., Böhm M., Elce J. S., Erdmann E., Lohse M. J. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation. 1993 Feb;87(2):454–463. doi: 10.1161/01.cir.87.2.454. [DOI] [PubMed] [Google Scholar]
  32. Ungerer M., Parruti G., Böhm M., Puzicha M., DeBlasi A., Erdmann E., Lohse M. J. Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ Res. 1994 Feb;74(2):206–213. doi: 10.1161/01.res.74.2.206. [DOI] [PubMed] [Google Scholar]
  33. Xiao R. P., Hohl C., Altschuld R., Jones L., Livingston B., Ziman B., Tantini B., Lakatta E. G. Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem. 1994 Jul 22;269(29):19151–19156. [PubMed] [Google Scholar]
  34. Xiao R. P., Lakatta E. G. Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res. 1993 Aug;73(2):286–300. doi: 10.1161/01.res.73.2.286. [DOI] [PubMed] [Google Scholar]
  35. Yang Y., Nunes F. A., Berencsi K., Furth E. E., Gönczöl E., Wilson J. M. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4407–4411. doi: 10.1073/pnas.91.10.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhou X. M., Pak M., Wang Z., Fishman P. H. Differences in desensitization between human beta 1- and beta 2-adrenergic receptors stably expressed in transfected hamster cells. Cell Signal. 1995 Mar;7(3):207–217. doi: 10.1016/0898-6568(94)00091-o. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES