Abstract
In cardiac fibrillation, disorganized waves of electrical activity meander through the heart, and coherent contractile function is lost. We studied fibrillation in three stationary forms: in human chronic atrial fibrillation, in a stabilized form of canine ventricular fibrillation, and in fibrillation-like activity in thin sheets of canine and human ventricular tissue in vitro. We also created a computer model of fibrillation. In all four studies, evidence indicated that fibrillation arose through a quasiperiodic stage of period and amplitude modulation, thus exemplifying the "quasiperiodic transition to chaos" first suggested by Ruelle and Takens. This suggests that fibrillation is a form of spatio-temporal chaos, a finding that implies new therapeutic approaches.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barkley D, Kness M, Tuckerman LS. Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation. Phys Rev A. 1990 Aug 15;42(4):2489–2492. doi: 10.1103/physreva.42.2489. [DOI] [PubMed] [Google Scholar]
- Bayly P. V., Johnson E. E., Wolf P. D., Greenside H. S., Smith W. M., Ideker R. E. A quantitative measurement of spatial order in ventricular fibrillation. J Cardiovasc Electrophysiol. 1993 Oct;4(5):533–546. doi: 10.1111/j.1540-8167.1993.tb01242.x. [DOI] [PubMed] [Google Scholar]
- Bonometti C., Hwang C., Hough D., Lee J. J., Fishbein M. C., Karagueuzian H. S., Chen P. S. Interaction between strong electrical stimulation and reentrant wavefronts in canine ventricular fibrillation. Circ Res. 1995 Aug;77(2):407–416. doi: 10.1161/01.res.77.2.407. [DOI] [PubMed] [Google Scholar]
- Brandstater A, Swinney HL. Strange attractors in weakly turbulent Couette-Taylor flow. Phys Rev A Gen Phys. 1987 Mar 1;35(5):2207–2220. doi: 10.1103/physreva.35.2207. [DOI] [PubMed] [Google Scholar]
- Bryant P, Brown R, Abarbanel HD. Lyapunov exponents from observed time series. Phys Rev Lett. 1990 Sep 24;65(13):1523–1526. doi: 10.1103/PhysRevLett.65.1523. [DOI] [PubMed] [Google Scholar]
- Cha Y. M., Birgersdotter-Green U., Wolf P. L., Peters B. B., Chen P. S. The mechanism of termination of reentrant activity in ventricular fibrillation. Circ Res. 1994 Mar;74(3):495–506. doi: 10.1161/01.res.74.3.495. [DOI] [PubMed] [Google Scholar]
- Chakravarti S, Marek M, Ray WH. Reaction-diffusion system with Brusselator kinetics: Control of a quasiperiodic route to chaos. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2407–2423. doi: 10.1103/physreve.52.2407. [DOI] [PubMed] [Google Scholar]
- Chen P. S., Wolf P. D., Dixon E. G., Danieley N. D., Frazier D. W., Smith W. M., Ideker R. E. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res. 1988 Jun;62(6):1191–1209. doi: 10.1161/01.res.62.6.1191. [DOI] [PubMed] [Google Scholar]
- Chialvo D. R., Gilmour R. F., Jr, Jalife J. Low dimensional chaos in cardiac tissue. Nature. 1990 Feb 15;343(6259):653–657. doi: 10.1038/343653a0. [DOI] [PubMed] [Google Scholar]
- Christini DJ, Collins JJ. Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Jan;53(1):R49–R52. doi: 10.1103/physreve.53.r49. [DOI] [PubMed] [Google Scholar]
- Clusin W. T., Bristow M. R., Baim D. S., Schroeder J. S., Jaillon P., Brett P., Harrison D. C. The effects of diltiazem and reduced serum ionized calcium on ischemic ventricular fibrillation in the dog. Circ Res. 1982 Apr;50(4):518–526. doi: 10.1161/01.res.50.4.518. [DOI] [PubMed] [Google Scholar]
- Courtemanche M, Glass L, Keener JP. Instabilities of a propagating pulse in a ring of excitable media. Phys Rev Lett. 1993 Apr 5;70(14):2182–2185. doi: 10.1103/PhysRevLett.70.2182. [DOI] [PubMed] [Google Scholar]
- Damle R. S., Kanaan N. M., Robinson N. S., Ge Y. Z., Goldberger J. J., Kadish A. H. Spatial and temporal linking of epicardial activation directions during ventricular fibrillation in dogs. Evidence for underlying organization. Circulation. 1992 Nov;86(5):1547–1558. doi: 10.1161/01.cir.86.5.1547. [DOI] [PubMed] [Google Scholar]
- Davidenko J. M., Pertsov A. V., Salomonsz R., Baxter W., Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992 Jan 23;355(6358):349–351. doi: 10.1038/355349a0. [DOI] [PubMed] [Google Scholar]
- Frame L. H., Simson M. B. Oscillations of conduction, action potential duration, and refractoriness. A mechanism for spontaneous termination of reentrant tachycardias. Circulation. 1988 Nov;78(5 Pt 1):1277–1287. doi: 10.1161/01.cir.78.5.1277. [DOI] [PubMed] [Google Scholar]
- Garfinkel A., Spano M. L., Ditto W. L., Weiss J. N. Controlling cardiac chaos. Science. 1992 Aug 28;257(5074):1230–1235. doi: 10.1126/science.1519060. [DOI] [PubMed] [Google Scholar]
- Gray R. A., Jalife J., Panfilov A. V., Baxter W. T., Cabo C., Davidenko J. M., Pertsov A. M. Mechanisms of cardiac fibrillation. Science. 1995 Nov 17;270(5239):1222–1225. [PubMed] [Google Scholar]
- Guevara M. R., Glass L., Shrier A. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science. 1981 Dec 18;214(4527):1350–1353. doi: 10.1126/science.7313693. [DOI] [PubMed] [Google Scholar]
- Kaplan D. T., Cohen R. J. Is fibrillation chaos? Circ Res. 1990 Oct;67(4):886–892. doi: 10.1161/01.res.67.4.886. [DOI] [PubMed] [Google Scholar]
- Karagueuzian H. S., Khan S. S., Peters W., Mandel W. J., Diamond G. A. Nonhomogeneous local atrial activity during acute atrial fibrillation: spectral and dynamic analysis. Pacing Clin Electrophysiol. 1990 Dec;13(12 Pt 2):1937–1942. doi: 10.1111/j.1540-8159.1990.tb06920.x. [DOI] [PubMed] [Google Scholar]
- Karma A. Meandering transition in two-dimensional excitable media. Phys Rev Lett. 1990 Nov 26;65(22):2824–2827. doi: 10.1103/PhysRevLett.65.2824. [DOI] [PubMed] [Google Scholar]
- Karma Alain. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos. 1994 Sep;4(3):461–472. doi: 10.1063/1.166024. [DOI] [PubMed] [Google Scholar]
- Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992 Mar 15;45(6):3403–3411. doi: 10.1103/physreva.45.3403. [DOI] [PubMed] [Google Scholar]
- Kirchhof C., Chorro F., Scheffer G. J., Brugada J., Konings K., Zetelaki Z., Allessie M. Regional entrainment of atrial fibrillation studied by high-resolution mapping in open-chest dogs. Circulation. 1993 Aug;88(2):736–749. doi: 10.1161/01.cir.88.2.736. [DOI] [PubMed] [Google Scholar]
- Konta T., Ikeda K., Yamaki M., Nakamura K., Honma K., Kubota I., Yasui S. Significance of discordant ST alternans in ventricular fibrillation. Circulation. 1990 Dec;82(6):2185–2189. doi: 10.1161/01.cir.82.6.2185. [DOI] [PubMed] [Google Scholar]
- Lechleiter J., Girard S., Peralta E., Clapham D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science. 1991 Apr 5;252(5002):123–126. doi: 10.1126/science.2011747. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Mohabir R., Smith N., Franz M. R., Clusin W. T. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation. 1988 Oct;78(4):1047–1059. doi: 10.1161/01.cir.78.4.1047. [DOI] [PubMed] [Google Scholar]
- Lipp P., Niggli E. Microscopic spiral waves reveal positive feedback in subcellular calcium signaling. Biophys J. 1993 Dec;65(6):2272–2276. doi: 10.1016/S0006-3495(93)81316-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCLAUGHLIN J., Jr, MARLIAC J. P., VERRETT M. J., MUTCHLER M. K., FITZHUGH O. G. THE INJECTION OF CHEMICALS INTO THE YOLK SAC OF FERTILE EGGS PRIOR TO INCUBATION AS A TOXICITY TEST. Toxicol Appl Pharmacol. 1963 Nov;5:760–771. doi: 10.1016/0041-008x(63)90068-1. [DOI] [PubMed] [Google Scholar]
- MOE G. K., RHEINBOLDT W. C., ABILDSKOV J. A. A COMPUTER MODEL OF ATRIAL FIBRILLATION. Am Heart J. 1964 Feb;67:200–220. doi: 10.1016/0002-8703(64)90371-0. [DOI] [PubMed] [Google Scholar]
- Martin S, Martienssen W. Circle maps and mode locking in the driven electrical conductivity of barium sodium niobate crystals. Phys Rev Lett. 1986 Apr 14;56(15):1522–1525. doi: 10.1103/PhysRevLett.56.1522. [DOI] [PubMed] [Google Scholar]
- Nearing B. D., Huang A. H., Verrier R. L. Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Science. 1991 Apr 19;252(5004):437–440. doi: 10.1126/science.2017682. [DOI] [PubMed] [Google Scholar]
- Nearing B. D., Hutter J. J., Verrier R. L. Potent antifibrillatory effect of combined blockade of calcium channels and 5-HT2 receptors with nexopamil during myocardial ischemia and reperfusion in dogs: comparison to diltiazem. J Cardiovasc Pharmacol. 1996 Jun;27(6):777–787. doi: 10.1097/00005344-199606000-00003. [DOI] [PubMed] [Google Scholar]
- Nolasco J. B., Dahlen R. W. A graphic method for the study of alternation in cardiac action potentials. J Appl Physiol. 1968 Aug;25(2):191–196. doi: 10.1152/jappl.1968.25.2.191. [DOI] [PubMed] [Google Scholar]
- Nwasokwa O. N., Bodenheimer M. M. Analysis of myocardial isometric dynamics using parameters of a global model. Am J Physiol. 1989 Oct;257(4 Pt 2):H1275–H1286. doi: 10.1152/ajpheart.1989.257.4.H1275. [DOI] [PubMed] [Google Scholar]
- Pertsov A. M., Davidenko J. M., Salomonsz R., Baxter W. T., Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res. 1993 Mar;72(3):631–650. doi: 10.1161/01.res.72.3.631. [DOI] [PubMed] [Google Scholar]
- Rensma P. L., Allessie M. A., Lammers W. J., Bonke F. I., Schalij M. J. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ Res. 1988 Feb;62(2):395–410. doi: 10.1161/01.res.62.2.395. [DOI] [PubMed] [Google Scholar]
- Rosenbaum D. S., Jackson L. E., Smith J. M., Garan H., Ruskin J. N., Cohen R. J. Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med. 1994 Jan 27;330(4):235–241. doi: 10.1056/NEJM199401273300402. [DOI] [PubMed] [Google Scholar]
- Savino G. V., Romanelli L., González D. L., Piro O., Valentinuzzi M. E. Evidence for chaotic behavior in driven ventricles. Biophys J. 1989 Aug;56(2):273–280. doi: 10.1016/S0006-3495(89)82673-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu A., Nozaki A., Rudy Y., Waldo A. L. Characterization of double potentials in a functionally determined reentrant circuit. Multiplexing studies during interruption of atrial flutter in the canine pericarditis model. J Am Coll Cardiol. 1993 Dec;22(7):2022–2032. doi: 10.1016/0735-1097(93)90793-z. [DOI] [PubMed] [Google Scholar]
- Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A Gen Phys. 1986 Sep;34(3):2427–2432. doi: 10.1103/physreva.34.2427. [DOI] [PubMed] [Google Scholar]
- Witkowski F. X., Penkoske P. A. Activation patterns during ventricular fibrillation. Ann N Y Acad Sci. 1990;591:219–231. doi: 10.1111/j.1749-6632.1990.tb15091.x. [DOI] [PubMed] [Google Scholar]
- Witkowski FX, Kavanagh KM, Penkoske PA, Plonsey R, Spano ML, Ditto WL, Kaplan DT. Evidence for determinism in ventricular fibrillation. Phys Rev Lett. 1995 Aug 7;75(6):1230–1233. doi: 10.1103/PhysRevLett.75.1230. [DOI] [PubMed] [Google Scholar]
