Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 1;99(3):501–505. doi: 10.1172/JCI119185

The exchange between proglycogen and macroglycogen and the metabolic role of the protein-rich glycogen in rat skeletal muscle.

M Huang 1, C Lee 1, R Lin 1, R Chen 1
PMCID: PMC507824  PMID: 9022084

Abstract

The aim of this study is to determine if proglycogen and macroglycogen are kinetically related in rat skeletal muscle. Eight groups of anesthetized fasted rats (seven hepatic-occluded and one nonoccluded) were intravenously infused with [3-3H]glucose at a rate of 1.7 microCi x min(-1) for 20 min. At the end of infusion, hindlimb muscles were excised and rapidly frozen in liquid nitrogen. Proglycogen was extracted by precipitation in 10% TCA; and macroglycogen as a part of total glycogen by precipitation in 20% KOH-65% ethanol. Along with the tracer, the occluded rats were also infused with: saline (group 1); insulin at rates ranging from 5 to 50 mU x min(-1) (groups 2 to 5); and insulin at a rate of 10 mU x min(-1) plus glucose at rates of 10.2 and 20.4 micromol x min(-1), respectively (groups 6 and 7). The infusion regimens resulted in up to 30-fold difference in whole-body glucose utilization among the rats. In the rats infused with saline and insulin at a rate of 5 mU x min(-1), [3H]glucose was found to be exclusively incorporated into proglycogen. Incorporation into macroglycogen was found in the rats infused with insulin at rates > 10 mU x min(-1). Supplementary glucose infusion increased the synthesis of [3H]proglycogen (four- to sixfold), and equilibrated the two extractable forms of glycogen in the insulin-infused rats. In the saline-infused nonoccluded rats, only proglycogen was found to be labeled. In conclusion, our data indicate that in the intact and hepatic-occluded rats, proglycogen in the skeletal muscles may undergo synthesis and degradation of its own more readily than exchange between itself and depot macroglycogen.

Full Text

The Full Text of this article is available as a PDF (154.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso M. D., Lomako J., Lomako W. M., Whelan W. J. A new look at the biogenesis of glycogen. FASEB J. 1995 Sep;9(12):1126–1137. doi: 10.1096/fasebj.9.12.7672505. [DOI] [PubMed] [Google Scholar]
  2. Ariano M. A., Armstrong R. B., Edgerton V. R. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51–55. doi: 10.1177/21.1.51. [DOI] [PubMed] [Google Scholar]
  3. Christopher M. J., Rantzau C., Ward G. M., Alford F. P. Insulinopenia and hyperglycemia influence the in vivo partitioning of GE and SI. Am J Physiol. 1995 Mar;268(3 Pt 1):E410–E421. doi: 10.1152/ajpendo.1995.268.3.E410. [DOI] [PubMed] [Google Scholar]
  4. Clark P. W., Jenkins A. B., Kraegen E. W. Pentobarbital reduces basal liver glucose output and its insulin suppression in rats. Am J Physiol. 1990 Apr;258(4 Pt 1):E701–E707. doi: 10.1152/ajpendo.1990.258.4.E701. [DOI] [PubMed] [Google Scholar]
  5. Del Prato S., Riccio A., Vigili de Kreutzenberg S., Dorella M., Tiengo A., DeFronzo R. A. Basal plasma insulin levels exert a qualitative but not quantitative effect on glucose-mediated glucose uptake. Am J Physiol. 1995 Jun;268(6 Pt 1):E1089–E1095. doi: 10.1152/ajpendo.1995.268.6.E1089. [DOI] [PubMed] [Google Scholar]
  6. Feliciano D. V., Mattox K. L., Jordan G. L., Jr, Burch J. M., Bitondo C. G., Cruse P. A. Management of 1000 consecutive cases of hepatic trauma (1979-1984). Ann Surg. 1986 Oct;204(4):438–445. doi: 10.1097/00000658-198610000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finegood D. T., Bergman R. N., Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987 Aug;36(8):914–924. doi: 10.2337/diab.36.8.914. [DOI] [PubMed] [Google Scholar]
  8. Fürnsinn C., Leuvenink H., Roden M., Nowotny P., Schneider B., Rohac M., Pieber T., Clodi M., Waldhäusl W. Islet amyloid polypeptide inhibits insulin secretion in conscious rats. Am J Physiol. 1994 Aug;267(2 Pt 1):E300–E305. doi: 10.1152/ajpendo.1994.267.2.E300. [DOI] [PubMed] [Google Scholar]
  9. Gottesman I., Mandarino L., Verdonk C., Rizza R., Gerich J. Insulin increases the maximum velocity for glucose uptake without altering the Michaelis constant in man. Evidence that insulin increases glucose uptake merely by providing additional transport sites. J Clin Invest. 1982 Dec;70(6):1310–1314. doi: 10.1172/JCI110731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang M. T. Simple validation for the hepatic venous cannula implanted chronically in conscious rats. J Appl Physiol (1985) 1991 Jul;71(1):359–364. doi: 10.1152/jappl.1991.71.1.359. [DOI] [PubMed] [Google Scholar]
  11. Huang M. T., Veech R. L. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state. J Clin Invest. 1988 Mar;81(3):872–878. doi: 10.1172/JCI113397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang M., Lin J., Lee C. The effect of xenobiotic acetylation on interorgan metabolism of glucose in fasted rats. Life Sci. 1996;58(11):935–944. doi: 10.1016/0024-3205(96)00036-7. [DOI] [PubMed] [Google Scholar]
  13. Kogure K., Suzuki M. Effects of hepatic inflow occlusion on changes in plasma potassium, histamine, and norepinephrine in rats. Circ Shock. 1992 Apr;36(4):290–298. [PubMed] [Google Scholar]
  14. Kraegen E. W., James D. E., Bennett S. P., Chisholm D. J. In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol. 1983 Jul;245(1):E1–E7. doi: 10.1152/ajpendo.1983.245.1.E1. [DOI] [PubMed] [Google Scholar]
  15. Laughlin M. R., Morgan C., Barrett E. J. Hypoxemic stimulation of heart glycogen synthase and synthesis. Effects of insulin and diabetes mellitus. Diabetes. 1991 Mar;40(3):385–390. doi: 10.2337/diab.40.3.385. [DOI] [PubMed] [Google Scholar]
  16. Lomako J., Lomako W. M., Whelan W. J. Proglycogen: a low-molecular-weight form of muscle glycogen. FEBS Lett. 1991 Feb 25;279(2):223–228. doi: 10.1016/0014-5793(91)80154-u. [DOI] [PubMed] [Google Scholar]
  17. Rodriguez I. R., Whelan W. J. A novel glycosyl-amino acid linkage: rabbit-muscle glycogen is covalently linked to a protein via tyrosine. Biochem Biophys Res Commun. 1985 Oct 30;132(2):829–836. doi: 10.1016/0006-291x(85)91206-9. [DOI] [PubMed] [Google Scholar]
  18. STETTEN D., Jr, STETTEN M. R. Glycogen metabolism. Physiol Rev. 1960 Jul;40:505–537. doi: 10.1152/physrev.1960.40.3.505. [DOI] [PubMed] [Google Scholar]
  19. Smythe C., Caudwell F. B., Ferguson M., Cohen P. Isolation and structural analysis of a peptide containing the novel tyrosyl-glucose linkage in glycogenin. EMBO J. 1988 Sep;7(9):2681–2686. doi: 10.1002/j.1460-2075.1988.tb03121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. YALOW R. S., BERSON S. A. Immunoassay of endogenous plasma insulin in man. J Clin Invest. 1960 Jul;39:1157–1175. doi: 10.1172/JCI104130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yki-Järvinen H., Young A. A., Lamkin C., Foley J. E. Kinetics of glucose disposal in whole body and across the forearm in man. J Clin Invest. 1987 Jun;79(6):1713–1719. doi: 10.1172/JCI113011. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES