Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 1;99(3):534–539. doi: 10.1172/JCI119190

Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15.

A Moran 1, H J Zhang 1, L K Olson 1, J S Harmon 1, V Poitout 1, R P Robertson 1
PMCID: PMC507829  PMID: 9022089

Abstract

Chronic exposure of HIT-T15 cells to supraphysiologic glucose concentration diminishes insulin gene expression and decreased binding of two critical insulin gene transcription factors, STF-1 and RIPE-3b1 activator. To distinguish whether these changes are caused by glucose toxicity or beta cell exhaustion, HIT-T15 cells grown from passage 75 through 99 in media containing 11.1 mM glucose were switched to 0.8 mM glucose at passage 100. They regained binding of STF-1 and RIPE-3b1 activator and had a partial but minimal return of insulin mRNA expression. In a second study, inclusion of somatostatin in the media-containing 11.1 mM glucose inhibited insulin secretion; however, despite this protection against beta cell exhaustion, dramatic decreases in insulin gene expression, STF-1 and RIPE-3b1 binding, and insulin gene promoter activity still occurred. These data indicate that the glucotoxic effects caused by chronic exposure to supraphysiologic concentration of glucose are only minimally reversible and that they are not due simply to beta cell exhaustion. These observations carry with them the clinical implication that Type II diabetic patients who remain hyperglycemic for prolonged periods may have secondary glucose toxic effects on the beta cell that could lead to defective insulin gene expression and worsening of hyperglycemia.

Full Text

The Full Text of this article is available as a PDF (281.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I., Sanchez-Pescador R. Sequence of a cDNA encoding Syrian hamster preproinsulin. Diabetes. 1984 Mar;33(3):297–300. doi: 10.2337/diab.33.3.297. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Davalli A. M., Ricordi C., Socci C., Braghi S., Bertuzzi F., Fattor B., Di Carlo V., Pontiroli A. E., Pozza G. Abnormal sensitivity to glucose of human islets cultured in a high glucose medium: partial reversibility after an additional culture in a normal glucose medium. J Clin Endocrinol Metab. 1991 Jan;72(1):202–208. doi: 10.1210/jcem-72-1-202. [DOI] [PubMed] [Google Scholar]
  4. Eizirik D. L., Korbutt G. S., Hellerström C. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest. 1992 Oct;90(4):1263–1268. doi: 10.1172/JCI115989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giroix M. H., Serradas P., Portha B. The desensitization of normal B-cells to glucose in vitro is transient and not related to high glucose levels. Endocrinology. 1989 Oct;125(4):1999–2007. doi: 10.1210/endo-125-4-1999. [DOI] [PubMed] [Google Scholar]
  6. Hammonds P., Schofield P. N., Ashcroft S. J. Glucose regulates preproinsulin messenger RNA levels in a clonal cell line of simian virus 40-transformed B cells. FEBS Lett. 1987 Mar 9;213(1):149–154. doi: 10.1016/0014-5793(87)81481-3. [DOI] [PubMed] [Google Scholar]
  7. Hoenig M., MacGregor L. C., Matschinsky F. M. In vitro exhaustion of pancreatic beta-cells. Am J Physiol. 1986 May;250(5 Pt 1):E502–E511. doi: 10.1152/ajpendo.1986.250.5.E502. [DOI] [PubMed] [Google Scholar]
  8. Imamura T., Koffler M., Helderman J. H., Prince D., Thirlby R., Inman L., Unger R. H. Severe diabetes induced in subtotally depancreatized dogs by sustained hyperglycemia. Diabetes. 1988 May;37(5):600–609. doi: 10.2337/diab.37.5.600. [DOI] [PubMed] [Google Scholar]
  9. Kaiser N., Corcos A. P., Sarel I., Cerasi E. Monolayer culture of adult rat pancreatic islets on extracellular matrix: modulation of B-cell function by chronic exposure to high glucose. Endocrinology. 1991 Oct;129(4):2067–2076. doi: 10.1210/endo-129-4-2067. [DOI] [PubMed] [Google Scholar]
  10. Leahy J. L., Bumbalo L. M., Chen C. Diazoxide causes recovery of beta-cell glucose responsiveness in 90% pancreatectomized diabetic rats. Diabetes. 1994 Feb;43(2):173–179. doi: 10.2337/diab.43.2.173. [DOI] [PubMed] [Google Scholar]
  11. Olson L. K., Redmon J. B., Towle H. C., Robertson R. P. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest. 1993 Jul;92(1):514–519. doi: 10.1172/JCI116596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olson L. K., Sharma A., Peshavaria M., Wright C. V., Towle H. C., Rodertson R. P., Stein R. Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9127–9131. doi: 10.1073/pnas.92.20.9127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Poitout V., Olson L. K., Robertson R. P. Chronic exposure of betaTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J Clin Invest. 1996 Feb 15;97(4):1041–1046. doi: 10.1172/JCI118496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Redmon J. B., Towle H. C., Robertson R. P. Regulation of human insulin gene transcription by glucose, epinephrine, and somatostatin. Diabetes. 1994 Apr;43(4):546–551. doi: 10.2337/diab.43.4.546. [DOI] [PubMed] [Google Scholar]
  15. Robertson R. P., Olson L. K., Zhang H. J. Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes. 1994 Sep;43(9):1085–1089. doi: 10.2337/diab.43.9.1085. [DOI] [PubMed] [Google Scholar]
  16. Robertson R. P., Tsai P., Little S. A., Zhang H. J., Walseth T. F. Receptor-mediated adenylate cyclase-coupled mechanism for PGE2 inhibition of insulin secretion in HIT cells. Diabetes. 1987 Sep;36(9):1047–1053. doi: 10.2337/diab.36.9.1047. [DOI] [PubMed] [Google Scholar]
  17. Robertson R. P. Type II diabetes, glucose "non-sense," and islet desensitization. Diabetes. 1989 Dec;38(12):1501–1505. doi: 10.2337/diab.38.12.1501. [DOI] [PubMed] [Google Scholar]
  18. Robertson R. P., Zhang H. J., Pyzdrowski K. L., Walseth T. F. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest. 1992 Aug;90(2):320–325. doi: 10.1172/JCI115865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rossetti L., Giaccari A., DeFronzo R. A. Glucose toxicity. Diabetes Care. 1990 Jun;13(6):610–630. doi: 10.2337/diacare.13.6.610. [DOI] [PubMed] [Google Scholar]
  20. Sako Y., Grill V. E. Coupling of beta-cell desensitization by hyperglycemia to excessive stimulation and circulating insulin in glucose-infused rats. Diabetes. 1990 Dec;39(12):1580–1583. doi: 10.2337/diab.39.12.1580. [DOI] [PubMed] [Google Scholar]
  21. Santerre R. F., Cook R. A., Crisel R. M., Sharp J. D., Schmidt R. J., Williams D. C., Wilson C. P. Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4339–4343. doi: 10.1073/pnas.78.7.4339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sharma A., Olson L. K., Robertson R. P., Stein R. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Mol Endocrinol. 1995 Sep;9(9):1127–1134. doi: 10.1210/mend.9.9.7491105. [DOI] [PubMed] [Google Scholar]
  23. Unger R. H., Grundy S. Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia. 1985 Mar;28(3):119–121. doi: 10.1007/BF00273856. [DOI] [PubMed] [Google Scholar]
  24. Vague P., Moulin J. P. The defective glucose sensitivity of the B cell in non insulin dependent diabetes. Improvement after twenty hours of normoglycaemia. Metabolism. 1982 Feb;31(2):139–142. doi: 10.1016/0026-0495(82)90125-1. [DOI] [PubMed] [Google Scholar]
  25. Yki-Järvinen H. Glucose toxicity. Endocr Rev. 1992 Aug;13(3):415–431. doi: 10.1210/edrv-13-3-415. [DOI] [PubMed] [Google Scholar]
  26. Zhang H. J., Redmon J. B., Andresen J. M., Robertson R. P. Somatostatin and epinephrine decrease insulin messenger ribonucleic acid in HIT cells through a pertussis toxin-sensitive mechanism. Endocrinology. 1991 Nov;129(5):2409–2414. doi: 10.1210/endo-129-5-2409. [DOI] [PubMed] [Google Scholar]
  27. Zhang H. J., Walseth T. F., Robertson R. P. Insulin secretion and cAMP metabolism in HIT cells. Reciprocal and serial passage-dependent relationships. Diabetes. 1989 Jan;38(1):44–48. doi: 10.2337/diab.38.1.44. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES