Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 15;99(4):602–607. doi: 10.1172/JCI119202

A novel role for vitamin K1 in a tyrosine phosphorylation cascade during chick embryogenesis.

S P Saxena 1, T Fan 1, M Li 1, E D Israels 1, L G Israels 1
PMCID: PMC507841  PMID: 9045861

Abstract

The development of the embryo is dependent upon a highly coordinated repertoire of cell division, differentiation, and migration. Protein-tyrosine phosphorylation plays a pivotal role in the regulation of these processes. Vitamin K-dependent gamma-carboxylated proteins have been identified as ligands for a unique family (Tyro 3 and 7) of receptor tyrosine kinases (RTKs) with transforming ability. The involvement of vitamin K metabolism and function in two well characterized birth defects, warfarin embryopathy and vitamin K epoxide reductase deficiency, suggests that developmental signals from K-dependent pathways may be required for normal embryogenesis. Using a chick embryogenesis model, we now demonstrate the existence of a vitamin K1-dependent protein-tyrosine phosphorylation cascade involving c-Eyk, a member of the Tyro 12 family, and key intracellular proteins, including focal adhesion kinase (pp125FAK), paxillin, and pp60src. This cascade is sensitive to alteration in levels or metabolism of vitamin K1. These findings provide a major clue as to why, in the mammalian (and human) fetus, the K-dependent proteins are maintained in an undercarboxylated state, even to the point of placing the newborn at hemorrhagic risk. The precise regulation of vitamin K1-dependent regulatory pathways would appear to be critical for orderly embryogenesis.

Full Text

The Full Text of this article is available as a PDF (346.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson E. D. Oncogenes in development. Development. 1987 Apr;99(4):449–471. doi: 10.1242/dev.99.4.449. [DOI] [PubMed] [Google Scholar]
  2. Aroian R. V., Koga M., Mendel J. E., Ohshima Y., Sternberg P. W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature. 1990 Dec 20;348(6303):693–699. doi: 10.1038/348693a0. [DOI] [PubMed] [Google Scholar]
  3. Barres B. A., Hart I. K., Coles H. S., Burne J. F., Voyvodic J. T., Richardson W. D., Raff M. C. Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 1992 Jul 10;70(1):31–46. doi: 10.1016/0092-8674(92)90531-g. [DOI] [PubMed] [Google Scholar]
  4. Basler K., Hafen E. Control of photoreceptor cell fate by the sevenless protein requires a functional tyrosine kinase domain. Cell. 1988 Jul 29;54(3):299–311. doi: 10.1016/0092-8674(88)90193-6. [DOI] [PubMed] [Google Scholar]
  5. Calalb M. B., Polte T. R., Hanks S. K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol. 1995 Feb;15(2):954–963. doi: 10.1128/mcb.15.2.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dahlbäck B. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost. 1991 Jul 12;66(1):49–61. [PubMed] [Google Scholar]
  7. Dowd P., Ham S. W., Naganathan S., Hershline R. The mechanism of action of vitamin K. Annu Rev Nutr. 1995;15:419–440. doi: 10.1146/annurev.nu.15.070195.002223. [DOI] [PubMed] [Google Scholar]
  8. Edelman G. M., Crossin K. L. Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem. 1991;60:155–190. doi: 10.1146/annurev.bi.60.070191.001103. [DOI] [PubMed] [Google Scholar]
  9. Furie B., Furie B. C. Molecular basis of vitamin K-dependent gamma-carboxylation. Blood. 1990 May 1;75(9):1753–1762. [PubMed] [Google Scholar]
  10. Gasic G. P., Arenas C. P., Gasic T. B., Gasic G. J. Coagulation factors X, Xa, and protein S as potent mitogens of cultured aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2317–2320. doi: 10.1073/pnas.89.6.2317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Godowski P. J., Mark M. R., Chen J., Sadick M. D., Raab H., Hammonds R. G. Reevaluation of the roles of protein S and Gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3. Cell. 1995 Aug 11;82(3):355–358. doi: 10.1016/0092-8674(95)90424-7. [DOI] [PubMed] [Google Scholar]
  12. Hall J. G., Pauli R. M., Wilson K. M. Maternal and fetal sequelae of anticoagulation during pregnancy. Am J Med. 1980 Jan;68(1):122–140. doi: 10.1016/0002-9343(80)90181-3. [DOI] [PubMed] [Google Scholar]
  13. Jia R., Hanafusa H. The proto-oncogene of v-eyk (v-ryk) is a novel receptor-type protein tyrosine kinase with extracellular Ig/GN-III domains. J Biol Chem. 1994 Jan 21;269(3):1839–1844. [PubMed] [Google Scholar]
  14. Krueger N. X., Saito H. A human transmembrane protein-tyrosine-phosphatase, PTP zeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7417–7421. doi: 10.1073/pnas.89.16.7417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lai C., Lemke G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron. 1991 May;6(5):691–704. doi: 10.1016/0896-6273(91)90167-x. [DOI] [PubMed] [Google Scholar]
  17. Maher P. A., Pasquale E. B. Tyrosine phosphorylated proteins in different tissues during chick embryo development. J Cell Biol. 1988 May;106(5):1747–1755. doi: 10.1083/jcb.106.5.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maher P. A. Tissue-dependent regulation of protein tyrosine kinase activity during embryonic development. J Cell Biol. 1991 Mar;112(5):955–963. doi: 10.1083/jcb.112.5.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Manfioletti G., Brancolini C., Avanzi G., Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol. 1993 Aug;13(8):4976–4985. doi: 10.1128/mcb.13.8.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mark M. R., Chen J., Hammonds R. G., Sadick M., Godowsk P. J. Characterization of Gas6, a member of the superfamily of G domain-containing proteins, as a ligand for Rse and Axl. J Biol Chem. 1996 Apr 19;271(16):9785–9789. doi: 10.1074/jbc.271.16.9785. [DOI] [PubMed] [Google Scholar]
  21. McCloskey P., Pierce J., Koski R. A., Varnum B., Liu E. T. Activation of the Axl receptor tyrosine kinase induces mitogenesis and transformation in 32D cells. Cell Growth Differ. 1994 Oct;5(10):1105–1117. [PubMed] [Google Scholar]
  22. Nakano T., Kishino J., Arita H. Characterization of a high-affinity and specific binding site for Gas6. FEBS Lett. 1996 May 27;387(1):75–77. doi: 10.1016/0014-5793(96)00394-8. [DOI] [PubMed] [Google Scholar]
  23. Nelsestuen G. L. Role of gamma-carboxyglutamic acid. An unusual protein transition required for the calcium-dependent binding of prothrombin to phospholipid. J Biol Chem. 1976 Sep 25;251(18):5648–5656. [PubMed] [Google Scholar]
  24. O'Bryan J. P., Frye R. A., Cogswell P. C., Neubauer A., Kitch B., Prokop C., Espinosa R., 3rd, Le Beau M. M., Earp H. S., Liu E. T. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991 Oct;11(10):5016–5031. doi: 10.1128/mcb.11.10.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ohashi K., Nagata K., Toshima J., Nakano T., Arita H., Tsuda H., Suzuki K., Mizuno K. Stimulation of sky receptor tyrosine kinase by the product of growth arrest-specific gene 6. J Biol Chem. 1995 Sep 29;270(39):22681–22684. doi: 10.1074/jbc.270.39.22681. [DOI] [PubMed] [Google Scholar]
  26. Olson R. E. The function and metabolism of vitamin K. Annu Rev Nutr. 1984;4:281–337. doi: 10.1146/annurev.nu.04.070184.001433. [DOI] [PubMed] [Google Scholar]
  27. Pasquale E. B., Singer S. J. Identification of a developmentally regulated protein-tyrosine kinase by using anti-phosphotyrosine antibodies to screen a cDNA expression library. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5449–5453. doi: 10.1073/pnas.86.14.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pauli R. M., Lian J. B., Mosher D. F., Suttie J. W. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. Am J Hum Genet. 1987 Oct;41(4):566–583. [PMC free article] [PubMed] [Google Scholar]
  29. Raff M. C., Lillien L. E., Richardson W. D., Burne J. F., Noble M. D. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature. 1988 Jun 9;333(6173):562–565. doi: 10.1038/333562a0. [DOI] [PubMed] [Google Scholar]
  30. Schaller M. D., Hildebrand J. D., Shannon J. D., Fox J. W., Vines R. R., Parsons J. T. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994 Mar;14(3):1680–1688. doi: 10.1128/mcb.14.3.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shearer M. J., Rahim S., Barkhan P., Stimmler L. Plasma vitamin K1 in mothers and their newborn babies. Lancet. 1982 Aug 28;2(8296):460–463. doi: 10.1016/s0140-6736(82)90493-7. [DOI] [PubMed] [Google Scholar]
  32. Shearer M. J. Vitamin K metabolism and nutriture. Blood Rev. 1992 Jun;6(2):92–104. doi: 10.1016/0268-960x(92)90011-e. [DOI] [PubMed] [Google Scholar]
  33. Sprenger F., Stevens L. M., Nüsslein-Volhard C. The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature. 1989 Apr 6;338(6215):478–483. doi: 10.1038/338478a0. [DOI] [PubMed] [Google Scholar]
  34. Stitt T. N., Conn G., Gore M., Lai C., Bruno J., Radziejewski C., Mattsson K., Fisher J., Gies D. R., Jones P. F. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995 Feb 24;80(4):661–670. doi: 10.1016/0092-8674(95)90520-0. [DOI] [PubMed] [Google Scholar]
  35. Turner C. E. Paxillin is a major phosphotyrosine-containing protein during embryonic development. J Cell Biol. 1991 Oct;115(1):201–207. doi: 10.1083/jcb.115.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Turner C. E. Paxillin: a cytoskeletal target for tyrosine kinases. Bioessays. 1994 Jan;16(1):47–52. doi: 10.1002/bies.950160107. [DOI] [PubMed] [Google Scholar]
  37. Turner C. E., Schaller M. D., Parsons J. T. Tyrosine phosphorylation of the focal adhesion kinase pp125FAK during development: relation to paxillin. J Cell Sci. 1993 Jul;105(Pt 3):637–645. doi: 10.1242/jcs.105.3.637. [DOI] [PubMed] [Google Scholar]
  38. Varnum B. C., Young C., Elliott G., Garcia A., Bartley T. D., Fridell Y. W., Hunt R. W., Trail G., Clogston C., Toso R. J. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature. 1995 Feb 16;373(6515):623–626. doi: 10.1038/373623a0. [DOI] [PubMed] [Google Scholar]
  39. von Kries R., Greer F. R., Suttie J. W. Assessment of vitamin K status of the newborn infant. J Pediatr Gastroenterol Nutr. 1993 Apr;16(3):231–238. doi: 10.1097/00005176-199304000-00001. [DOI] [PubMed] [Google Scholar]
  40. von Kries R., Shearer M. J., Göbel U. Vitamin K in infancy. Eur J Pediatr. 1988 Feb;147(2):106–112. doi: 10.1007/BF00442204. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES