Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 15;99(4):628–634. doi: 10.1172/JCI119205

Effects of intranasal cocaine on sympathetic nerve discharge in humans.

T N Jacobsen 1, P A Grayburn 1, R W Snyder 2nd 1, J Hansen 1, B Chavoshan 1, C Landau 1, R A Lange 1, L D Hillis 1, R G Victor 1
PMCID: PMC507844  PMID: 9045864

Abstract

Cocaine-induced cardiovascular emergencies are mediated by excessive adrenergic stimulation. Animal studies suggest that cocaine not only blocks norepinephrine reuptake peripherally but also inhibits the baroreceptors, thereby reflexively increasing sympathetic nerve discharge. However, the effect of cocaine on sympathetic nerve discharge in humans is unknown. In 12 healthy volunteers, we recorded blood pressure and sympathetic nerve discharge to the skeletal muscle vasculature using intraneural microelectrodes (peroneal nerve) during intranasal cocaine (2 mg/kg, n = 8) or lidocaine (2%, n = 4), an internal local anesthetic control, or intravenous phenylephrine (0.5-2.0 microg/kg, n = 4), an internal sympathomimetic control. Experiments were repeated while minimizing the cocaine-induced rise in blood pressure with intravenous nitroprusside to negate sinoaortic baroreceptor stimulation. After lidocaine, blood pressure and sympathetic nerve discharge were unchanged. After cocaine, blood pressure increased abruptly and remained elevated for 60 min while sympathetic nerve discharge initially was unchanged and then decreased progressively over 60 min to a nadir that was only 2+/-1% of baseline (P < 0.05); however, plasma venous norepinephrine concentrations (n = 5) were unchanged up to 60 min after cocaine. Sympathetic nerve discharge fell more rapidly but to the same nadir when blood pressure was increased similarly with phenylephrine. When the cocaine-induced increase in blood pressure was minimized (nitroprusside), sympathetic nerve discharge did not decrease but rather increased by 2.9 times over baseline (P < 0.05). Baroreflex gain was comparable before and after cocaine. We conclude that in conscious humans the primary effect of intranasal cocaine is to increase sympathetic nerve discharge to the skeletal muscle bed. Furthermore, sinoaortic baroreflexes play a pivotal role in modulating the cocaine-induced sympathetic excitation. The interplay between these excitatory and inhibitory neural influences determines the net effect of cocaine on sympathetic discharge targeted to the human skeletal muscle circulation.

Full Text

The Full Text of this article is available as a PDF (187.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andresen M. C., Yang M., Nelson S. H., Steinsland O. S. Cocaine inhibits baroreflex control of blood pressure by actions at arterial baroreceptors. Am J Physiol. 1990 Apr;258(4 Pt 2):H1244–H1249. doi: 10.1152/ajpheart.1990.258.4.H1244. [DOI] [PubMed] [Google Scholar]
  2. Brogan W. C., 3rd, Lange R. A., Kim A. S., Moliterno D. J., Hillis L. D. Alleviation of cocaine-induced coronary vasoconstriction by nitroglycerin. J Am Coll Cardiol. 1991 Aug;18(2):581–586. doi: 10.1016/0735-1097(91)90617-i. [DOI] [PubMed] [Google Scholar]
  3. Brown A. M. Receptors under pressure. An update on baroreceptors. Circ Res. 1980 Jan;46(1):1–10. doi: 10.1161/01.res.46.1.1. [DOI] [PubMed] [Google Scholar]
  4. Cregler L. L., Mark H. Medical complications of cocaine abuse. N Engl J Med. 1986 Dec 4;315(23):1495–1500. doi: 10.1056/NEJM198612043152327. [DOI] [PubMed] [Google Scholar]
  5. Ebert T. J., Mohanty P. K., Kampine J. P. Lidocaine attenuates efferent sympathetic responses to stress in humans. J Cardiothorac Vasc Anesth. 1991 Oct;5(5):437–443. doi: 10.1016/1053-0770(91)90116-b. [DOI] [PubMed] [Google Scholar]
  6. Ellenbogen K. A., Smith M. L., Beightol L. A., Eckberg D. L. Influence of lidocaine on human muscle sympathetic nerve activity during programmed electrical stimulation and ventricular tachycardia. Am Heart J. 1992 Oct;124(4):891–897. doi: 10.1016/0002-8703(92)90969-3. [DOI] [PubMed] [Google Scholar]
  7. FURCHGOTT R. F., KIRPEKAR S. M., RIEKER M., SCHWAB A. ACTIONS AND INTERACTIONS OF NOREPINEPHRINE, TYRAMINE AND COCAINE ON AORTIC STRIPS OF RABBIT AND LEFT ATRIA OF GUINEA PIG AND CAT. J Pharmacol Exp Ther. 1963 Oct;142:39–58. [PubMed] [Google Scholar]
  8. Gantenberg N. S., Hageman G. R. Cocaine depresses cardiac sympathetic efferent activity in anesthetized dogs. J Cardiovasc Pharmacol. 1991 Mar;17(3):434–439. doi: 10.1097/00005344-199103000-00012. [DOI] [PubMed] [Google Scholar]
  9. Gillis R. A., Hernandez Y. M., Erzouki H. K., Raczkowski V. F., Mandal A. K., Kuhn F. E., Dretchen K. L. Sympathetic nervous system mediated cardiovascular effects of cocaine are primarily due to a peripheral site of action of the drug. Drug Alcohol Depend. 1995 Mar;37(3):217–230. doi: 10.1016/0376-8716(94)01087-2. [DOI] [PubMed] [Google Scholar]
  10. Goldstein D. S., Feuerstein G., Izzo J. L., Jr, Kopin I. J., Keiser H. R. Validity and reliability of liquid chromatography with electrochemical detection for measuring plasma levels of norepinephrine and epinephrine in man. Life Sci. 1981 Feb 2;28(5):467–475. doi: 10.1016/0024-3205(81)90139-9. [DOI] [PubMed] [Google Scholar]
  11. Gradman A. H. Cardiac effects of cocaine: a review. Yale J Biol Med. 1988 Mar-Apr;61(2):137–147. [PMC free article] [PubMed] [Google Scholar]
  12. Hageman G. R., Simor T. Attenuation of the cardiac effects of cocaine by dizocilpine. Am J Physiol. 1993 Jun;264(6 Pt 2):H1890–H1895. doi: 10.1152/ajpheart.1993.264.6.H1890. [DOI] [PubMed] [Google Scholar]
  13. Isner J. M., Estes N. A., 3rd, Thompson P. D., Costanzo-Nordin M. R., Subramanian R., Miller G., Katsas G., Sweeney K., Sturner W. Q. Acute cardiac events temporally related to cocaine abuse. N Engl J Med. 1986 Dec 4;315(23):1438–1443. doi: 10.1056/NEJM198612043152302. [DOI] [PubMed] [Google Scholar]
  14. Johns M. E., Henderson R. L. Cocaine use by the otolaryngologist: a survey. Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol. 1977 Nov-Dec;84(6):969–973. [PubMed] [Google Scholar]
  15. Karch S. B., Billingham M. E. The pathology and etiology of cocaine-induced heart disease. Arch Pathol Lab Med. 1988 Mar;112(3):225–230. [PubMed] [Google Scholar]
  16. Kloner R. A., Hale S., Alker K., Rezkalla S. The effects of acute and chronic cocaine use on the heart. Circulation. 1992 Feb;85(2):407–419. doi: 10.1161/01.cir.85.2.407. [DOI] [PubMed] [Google Scholar]
  17. Knuepfer M. M., Branch C. A. Cardiovascular responses to cocaine are initially mediated by the central nervous system in rats. J Pharmacol Exp Ther. 1992 Nov;263(2):734–741. [PubMed] [Google Scholar]
  18. Lange R. A., Cigarroa R. G., Flores E. D., McBride W., Kim A. S., Wells P. J., Bedotto J. B., Danziger R. S., Hillis L. D. Potentiation of cocaine-induced coronary vasoconstriction by beta-adrenergic blockade. Ann Intern Med. 1990 Jun 15;112(12):897–903. doi: 10.7326/0003-4819-112-12-897. [DOI] [PubMed] [Google Scholar]
  19. Lange R. A., Cigarroa R. G., Yancy C. W., Jr, Willard J. E., Popma J. J., Sills M. N., McBride W., Kim A. S., Hillis L. D. Cocaine-induced coronary-artery vasoconstriction. N Engl J Med. 1989 Dec 7;321(23):1557–1562. doi: 10.1056/NEJM198912073212301. [DOI] [PubMed] [Google Scholar]
  20. Lange R. A., Willard J. E. The cardiovascular effects of cocaine. Heart Dis Stroke. 1993 Mar-Apr;2(2):136–141. [PubMed] [Google Scholar]
  21. MUSCHOLL E. Effect of cocaine and related drugs on the uptake of noradrenaline by heart and spleen. Br J Pharmacol Chemother. 1961 Jun;16:352–359. doi: 10.1111/j.1476-5381.1961.tb01095.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mark A. L., Victor R. G., Nerhed C., Wallin B. G. Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans. Circ Res. 1985 Sep;57(3):461–469. doi: 10.1161/01.res.57.3.461. [DOI] [PubMed] [Google Scholar]
  23. Raczkowski V. F., Hernandez Y. M., Erzouki H. K., Abrahams T. P., Mandal A. K., Hamosh P., Friedman E., Quest J. A., Dretchen K. L., Gillis R. A. Cocaine acts in the central nervous system to inhibit sympathetic neural activity. J Pharmacol Exp Ther. 1991 Apr;257(1):511–519. [PubMed] [Google Scholar]
  24. Resnick R. B., Kestenbaum R. S., Schwartz L. K. Acute systemic effects of cocaine in man: a controlled study by intranasal and intravenous routes. Science. 1977 Feb 18;195(4279):696–698. doi: 10.1126/science.841307. [DOI] [PubMed] [Google Scholar]
  25. Scherrer U., Pryor S. L., Bertocci L. A., Victor R. G. Arterial baroreflex buffering of sympathetic activation during exercise-induced elevations in arterial pressure. J Clin Invest. 1990 Dec;86(6):1855–1861. doi: 10.1172/JCI114916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schiller N. B., Shah P. M., Crawford M., DeMaria A., Devereux R., Feigenbaum H., Gutgesell H., Reichek N., Sahn D., Schnittger I. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr. 1989 Sep-Oct;2(5):358–367. doi: 10.1016/s0894-7317(89)80014-8. [DOI] [PubMed] [Google Scholar]
  27. Schroeder J. S., Mullin A. V., Elliott G. R., Steiner H., Nichols M., Gordon A., Paulos M. Cardiovascular effects of desipramine in children. J Am Acad Child Adolesc Psychiatry. 1989 May;28(3):376–379. doi: 10.1097/00004583-198905000-00012. [DOI] [PubMed] [Google Scholar]
  28. Smith H. W., 3rd, Liberman H. A., Brody S. L., Battey L. L., Donohue B. C., Morris D. C. Acute myocardial infarction temporally related to cocaine use. Clinical, angiographic, and pathophysiologic observations. Ann Intern Med. 1987 Jul;107(1):13–18. doi: 10.7326/0003-4819-107-1-13. [DOI] [PubMed] [Google Scholar]
  29. Thorén P. N. Characteristics of left ventricular receptors with nonmedullated vagal afferents in cats. Circ Res. 1977 Apr;40(4):415–421. doi: 10.1161/01.res.40.4.415. [DOI] [PubMed] [Google Scholar]
  30. Trouvé R., Nahas G., Latour C. Inhibition by cocaine of the baroreflex in the rat. Proc Soc Exp Biol Med. 1992 Nov;201(2):215–218. doi: 10.3181/00379727-201-43501. [DOI] [PubMed] [Google Scholar]
  31. Vallbo A. B., Hagbarth K. E., Torebjörk H. E., Wallin B. G. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979 Oct;59(4):919–957. doi: 10.1152/physrev.1979.59.4.919. [DOI] [PubMed] [Google Scholar]
  32. WHITBY L. G., HERTTING G., AXELROD J. Effect of cocaine on the disposition of noradrenaline labelled with tritium. Nature. 1960 Aug 13;187:604–605. doi: 10.1038/187604a0. [DOI] [PubMed] [Google Scholar]
  33. Warner E. A. Cocaine abuse. Ann Intern Med. 1993 Aug 1;119(3):226–235. doi: 10.7326/0003-4819-119-3-199308010-00009. [DOI] [PubMed] [Google Scholar]
  34. Wilkerson R. D. Cardiovascular effects of cocaine in conscious dogs: importance of fully functional autonomic and central nervous systems. J Pharmacol Exp Ther. 1988 Aug;246(2):466–471. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES