Abstract
It has been postulated that HIV-infected patients undergo an active production of virus and CD4+ T cell destruction from the early stages of the disease, and that an extensive postthymic expansion of CD4+ T cells prevents a precipitous decline in CD4+ T cell number. Based on the rebound of the CD4+ T cell number observed in patients undergoing antiretroviral therapy with protease inhibitors, it has been calculated that, on average, 5% of T cells are replaced every day in HIV-infected patients. To obtain an independent estimate of the recycling rate of T cells in the patients, we measured the frequency of cells carrying a loss-of-function mutation at the hypoxanthine guanine phosphoribosyl transferase (hprt) locus. Assuming a recycling rate of 5%/d, an accumulation of 2.6 mutations/10(6)/yr over the physiological accumulation was predicted. Indeed, we observed an elevated frequency of HPRT mutants in the CD4+ T cells of most patients with < 300 CD4+ T cells/mm3 of blood and in the CD8+ T cells of most patients with < 200 CD4+ T cells/mm3, consistent with an elevated and protracted increased division rate in both subsets. However, in earlier stages of the disease the mutant frequency in both CD4+ and CD8+ T cells was lower than in healthy controls. The cytokine production profile of most HPRT mutant CD4+ T cell clones from both healthy and HIV-infected patients was typical of T helper cells type 2 (high IL-4 and IL-10, low IFN-gamma), whereas the cytokine production pattern of wild-type clones was heterogeneous. The cytokine profile of CD8+ clones was indistinguishable between HPRT mutants and wild type. Our data provide evidence of increased CD4+ and CD8+ T cell recycling in the HIV-infected patients.
Full Text
The Full Text of this article is available as a PDF (188.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertini R. J., Nicklas J. A., O'Neill J. P., Robison S. H. In vivo somatic mutations in humans: measurement and analysis. Annu Rev Genet. 1990;24:305–326. doi: 10.1146/annurev.ge.24.120190.001513. [DOI] [PubMed] [Google Scholar]
- Allegretta M., Nicklas J. A., Sriram S., Albertini R. J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990 Feb 9;247(4943):718–721. doi: 10.1126/science.1689076. [DOI] [PubMed] [Google Scholar]
- Chen W. F., Wilson A., Scollay R., Shortman K. Limit-dilution assay and clonal expansion of all T cells capable of proliferation. J Immunol Methods. 1982 Aug 13;52(3):307–322. doi: 10.1016/0022-1759(82)90003-5. [DOI] [PubMed] [Google Scholar]
- Chou C. C., Gudeman V., O'Rourke S., Isacescu V., Detels R., Williams G. J., Mitsuyasu R. T., Giorgi J. V. Phenotypically defined memory CD4+ cells are not selectively decreased in chronic HIV disease. J Acquir Immune Defic Syndr. 1994 Jul;7(7):665–675. [PubMed] [Google Scholar]
- Cole J., Skopek T. R. International Commission for Protection Against Environmental Mutagens and Carcinogens. Working paper no. 3. Somatic mutant frequency, mutation rates and mutational spectra in the human population in vivo. Mutat Res. 1994 Jan;304(1):33–105. doi: 10.1016/0027-5107(94)90320-4. [DOI] [PubMed] [Google Scholar]
- Embretson J., Zupancic M., Ribas J. L., Burke A., Racz P., Tenner-Racz K., Haase A. T. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993 Mar 25;362(6418):359–362. doi: 10.1038/362359a0. [DOI] [PubMed] [Google Scholar]
- Fauci A. S. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science. 1993 Nov 12;262(5136):1011–1018. doi: 10.1126/science.8235617. [DOI] [PubMed] [Google Scholar]
- Gmelig-Meyling F., Dawisha S., Steinberg A. D. Assessment of in vivo frequency of mutated T cells in patients with systemic lupus erythematosus. J Exp Med. 1992 Jan 1;175(1):297–300. doi: 10.1084/jem.175.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. H., O'Neill J. P., Cole J. Suggestions concerning the relationship between mutant frequency and mutation rate at the hprt locus in human peripheral T-lymphocytes. Mutat Res. 1995 Jun;334(3):323–339. doi: 10.1016/0165-1161(95)90070-5. [DOI] [PubMed] [Google Scholar]
- Groux H., Torpier G., Monté D., Mouton Y., Capron A., Ameisen J. C. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med. 1992 Feb 1;175(2):331–340. doi: 10.1084/jem.175.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hakoda M., Hirai Y., Akiyama M., Yamanaka H., Terai C., Kamatani N., Kashiwazaki S. Selection against blood cells deficient in hypoxanthine phosphoribosyltransferase (HPRT) in Lesch-Nyhan heterozygotes occurs at the level of multipotent stem cells. Hum Genet. 1995 Dec;96(6):674–680. doi: 10.1007/BF00210298. [DOI] [PubMed] [Google Scholar]
- Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
- Itescu S., Dalton J., Zhang H. Z., Winchester R. Tissue infiltration in a CD8 lymphocytosis syndrome associated with human immunodeficiency virus-1 infection has the phenotypic appearance of an antigenically driven response. J Clin Invest. 1993 May;91(5):2216–2225. doi: 10.1172/JCI116448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackall C. L., Fleisher T. A., Brown M. R., Andrich M. P., Chen C. C., Feuerstein I. M., Horowitz M. E., Magrath I. T., Shad A. T., Steinberg S. M. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med. 1995 Jan 19;332(3):143–149. doi: 10.1056/NEJM199501193320303. [DOI] [PubMed] [Google Scholar]
- Mackall C. L., Granger L., Sheard M. A., Cepeda R., Gress R. E. T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood. 1993 Oct 15;82(8):2585–2594. [PubMed] [Google Scholar]
- Maggi E., Mazzetti M., Ravina A., Annunziato F., de Carli M., Piccinni M. P., Manetti R., Carbonari M., Pesce A. M., del Prete G. Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells. Science. 1994 Jul 8;265(5169):244–248. doi: 10.1126/science.8023142. [DOI] [PubMed] [Google Scholar]
- Manetti R., Gerosa F., Giudizi M. G., Biagiotti R., Parronchi P., Piccinni M. P., Sampognaro S., Maggi E., Romagnani S., Trinchieri G. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J Exp Med. 1994 Apr 1;179(4):1273–1283. doi: 10.1084/jem.179.4.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miedema F., Petit A. J., Terpstra F. G., Schattenkerk J. K., de Wolf F., Al B. J., Roos M., Lange J. M., Danner S. A., Goudsmit J. Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men. HIV affects the immune system before CD4+ T helper cell depletion occurs. J Clin Invest. 1988 Dec;82(6):1908–1914. doi: 10.1172/JCI113809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moretta A., Pantaleo G., Moretta L., Cerottini J. C., Mingari M. C. Direct demonstration of the clonogenic potential of every human peripheral blood T cell. Clonal analysis of HLA-DR expression and cytolytic activity. J Exp Med. 1983 Feb 1;157(2):743–754. doi: 10.1084/jem.157.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy M., Loudon R., Kobayashi M., Trinchieri G. Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation. J Exp Med. 1986 Jul 1;164(1):263–279. doi: 10.1084/jem.164.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roederer M., Dubs J. G., Anderson M. T., Raju P. A., Herzenberg L. A., Herzenberg L. A. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest. 1995 May;95(5):2061–2066. doi: 10.1172/JCI117892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shearer G. M., Clerici M. Early T-helper cell defects in HIV infection. AIDS. 1991 Mar;5(3):245–253. doi: 10.1097/00002030-199103000-00001. [DOI] [PubMed] [Google Scholar]
- Sprent J., Tough D. HIV results in the frame. CD4+ cell turnover. Nature. 1995 May 18;375(6528):194–198. doi: 10.1038/375194a0. [DOI] [PubMed] [Google Scholar]
- Wain-Hobson S. AIDS. Virological mayhem. Nature. 1995 Jan 12;373(6510):102–102. doi: 10.1038/373102a0. [DOI] [PubMed] [Google Scholar]
- Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]
- van der Pouw-Kraan T., de Jong R., Aarden L. Development of human Th1 and Th2 cytokine responses: the cytokine production profile of T cells is dictated by the primary in vitro stimulus. Eur J Immunol. 1993 Jan;23(1):1–5. doi: 10.1002/eji.1830230102. [DOI] [PubMed] [Google Scholar]
