Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 15;99(4):669–675. doi: 10.1172/JCI119210

Vitamin D and gonadal steroid-resistant New World primate cells express an intracellular protein which competes with the estrogen receptor for binding to the estrogen response element.

H Chen 1, J E Arbelle 1, M A Gacad 1, E A Allegretto 1, J S Adams 1
PMCID: PMC507849  PMID: 9045869

Abstract

New World primates (NWP) exhibit a form of compensated resistance to vitamin D and other steroid hormones, including 17beta-estradiol. One postulated cause of resistance is that NWP cells overexpress one or more proteins which block hormone action by competing with hormone for its cognate hormone response element. Here we report that both nuclear and postnuclear extracts from NWP, but not Old World primate, cells contained a protein(s) capable of binding directly to the estrogen response element (ERE). This ERE binding protein(s) (ERE-BP) was dissociated from the ERE by excess of either unlabeled ERE or excess of the ERE half-site motif AGGTCAcag. DNA affinity chromatography using concatamers of the latter resulted in > 20,000-fold purification of the ERE-BP. The intensity of the ERE-BP-ERE complex in electromobility shift assay was indirectly related to the amount of wild-type Old World primate estrogen receptor (ER) but not affected when potential ligands, including 17beta-estradiol (up to 100 nM), or anti-ER antibody was added to the binding reaction. We conclude that vitamin D-resistant and gonadal steroid-resistant NWP cells contain a protein(s) that may "silence" ER action by interacting directly with the ERE and interfering with ER binding.

Full Text

The Full Text of this article is available as a PDF (294.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. S., Gacad M. A. Phenotypic diversity of the cellular 1,25-dihydroxyvitamin D3-receptor interaction among different genera of New World primates. J Clin Endocrinol Metab. 1988 Jan;66(1):224–229. doi: 10.1210/jcem-66-1-224. [DOI] [PubMed] [Google Scholar]
  2. Arbelle J. E., Chen H., Gaead M. A., Allegretto E. A., Pike J. W., Adams J. S. Inhibition of vitamin D receptor-retinoid X receptor-vitamin D response element complex formation by nuclear extracts of vitamin D-resistant New World primate cells. Endocrinology. 1996 Feb;137(2):786–789. doi: 10.1210/endo.137.2.8593831. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Burbach J. P., Lopes da Silva S., Cox J. J., Adan R. A., Cooney A. J., Tsai M. J., Tsai S. Y. Repression of estrogen-dependent stimulation of the oxytocin gene by chicken ovalbumin upstream promoter transcription factor I. J Biol Chem. 1994 May 27;269(21):15046–15053. [PubMed] [Google Scholar]
  5. Chrousos G. P., Brandon D., Renquist D. M., Tomita M., Johnson E., Loriaux D. L., Lipsett M. B. Uterine estrogen and progesterone receptors in an estrogen- and progesterone- "resistant" primate. J Clin Endocrinol Metab. 1984 Mar;58(3):516–520. doi: 10.1210/jcem-58-3-516. [DOI] [PubMed] [Google Scholar]
  6. Chrousos G. P., Loriaux D. L., Brandon D., Shull J., Renquist D., Hogan W., Tomita M., Lipsett M. B. Adaptation of the mineralocorticoid target tissues to the high circulating cortisol and progesterone plasma levels in the squirrel monkey. Endocrinology. 1984 Jul;115(1):25–32. doi: 10.1210/endo-115-1-25. [DOI] [PubMed] [Google Scholar]
  7. Chrousos G. P., Renquist D., Brandon D., Eil C., Pugeat M., Vigersky R., Cutler G. B., Jr, Loriaux D. L., Lipsett M. B. Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2036–2040. doi: 10.1073/pnas.79.6.2036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gacad M. A., Adams J. S. Endogenous blockade of 1,25-dihydroxyvitamin D-receptor binding in New World primate cells. J Clin Invest. 1991 Mar;87(3):996–1001. doi: 10.1172/JCI115108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gacad M. A., Adams J. S. Identification of a competitive binding component in vitamin D-resistant New World primate cells with a low affinity but high capacity for 1,25-dihydroxyvitamin D3. J Bone Miner Res. 1993 Jan;8(1):27–35. doi: 10.1002/jbmr.5650080105. [DOI] [PubMed] [Google Scholar]
  10. Gacad M. A., Adams J. S. Specificity of steroid binding in New World primate B95-8 cells with a vitamin D-resistant phenotype. Endocrinology. 1992 Dec;131(6):2581–2587. doi: 10.1210/endo.131.6.1446602. [DOI] [PubMed] [Google Scholar]
  11. Kadonaga J. T., Tjian R. Affinity purification of sequence-specific DNA binding proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5889–5893. doi: 10.1073/pnas.83.16.5889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lipsett M. B., Chrousos G. P., Tomita M., Brandon D. D., Loriaux D. L. The defective glucocorticoid receptor in man and nonhuman primates. Recent Prog Horm Res. 1985;41:199–247. doi: 10.1016/b978-0-12-571141-8.50009-3. [DOI] [PubMed] [Google Scholar]
  13. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  14. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moore C. C., Mellon S. H., Murai J., Siiteri P. K., Miller W. L. Structure and function of the hepatic form of 11 beta-hydroxysteroid dehydrogenase in the squirrel monkey, an animal model of glucocorticoid resistance. Endocrinology. 1993 Jul;133(1):368–375. doi: 10.1210/endo.133.1.8319583. [DOI] [PubMed] [Google Scholar]
  16. Pham T. A., Hwung Y. P., Santiso-Mere D., McDonnell D. P., O'Malley B. W. Ligand-dependent and -independent function of the transactivation regions of the human estrogen receptor in yeast. Mol Endocrinol. 1992 Jul;6(7):1043–1050. doi: 10.1210/mend.6.7.1508220. [DOI] [PubMed] [Google Scholar]
  17. Takahashi N., Suda S., Shinki T., Horiuchi N., Shiina Y., Tanioka Y., Koizumi H., Suda T. The mechanism of end-organ resistance to 1 alpha,25-dihydroxycholecalciferol in the common marmoset. Biochem J. 1985 Apr 15;227(2):555–563. doi: 10.1042/bj2270555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tsai M. J., O'Malley B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–486. doi: 10.1146/annurev.bi.63.070194.002315. [DOI] [PubMed] [Google Scholar]
  19. Tzukerman M. T., Esty A., Santiso-Mere D., Danielian P., Parker M. G., Stein R. B., Pike J. W., McDonnell D. P. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol. 1994 Jan;8(1):21–30. doi: 10.1210/mend.8.1.8152428. [DOI] [PubMed] [Google Scholar]
  20. Zerivitz K., Akusjärvi G. An improved nuclear extract preparation method. Gene Anal Tech. 1989 Sep-Oct;6(5):101–109. doi: 10.1016/0735-0651(89)90016-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES