Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 15;99(4):676–683. doi: 10.1172/JCI119211

Insights into thymic purine metabolism and adenosine deaminase deficiency revealed by transgenic mice overexpressing ecto-5'-nucleotidase (CD73).

R Resta 1, S W Hooker 1, A B Laurent 1, S M Jamshedur Rahman 1, M Franklin 1, T B Knudsen 1, N L Nadon 1, L F Thompson 1
PMCID: PMC507850  PMID: 9045870

Abstract

The adenosine producing enzyme ecto-5'-nucleotidase (5'-NT) is not normally expressed during thymocyte development until the medullary stage. To determine whether earlier expression would lead to adenosine accumulation and/or be deleterious for thymocyte maturation, thymic purine metabolism, and T cell differentiation were studied in lckNT transgenic mice overexpressing 5'-NT in cortical thymocytes under the control of the lck proximal promoter. In spite of a 100-fold elevation in thymic 5'-NT activity, transgenic adenosine levels were unchanged and T cell immunity was normal. Inosine, the product of adenosine deamination, was elevated more than twofold, however, indicating that adenosine deaminase (ADA) can prevent the accumulation of adenosine, even with a dramatic increase in 5'-NT activity, and demonstrating the availability of 5'-NT substrates in the thymus for the first time. Thymic adenosine concentrations of mice treated with the ADA inhibitor 2'-deoxycoformycin (dCF) were elevated over 30-fold, suggesting that high ADA activity, rather than an absence of 5'-NT, is mainly responsible for low thymic adenosine levels. The adenosine concentrations in dCF-treated mice are sufficient to cause adenosine receptor-mediated thymocyte apoptosis in vitro, suggesting that adenosine accumulation could play a role in ADA-deficient severe combined immunodeficiency.

Full Text

The Full Text of this article is available as a PDF (193.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn M. R., Datta S. K., Wakamiya M., Vartabedian B. S., Kellems R. E. Metabolic and immunologic consequences of limited adenosine deaminase expression in mice. J Biol Chem. 1996 Jun 21;271(25):15203–15210. doi: 10.1074/jbc.271.25.15203. [DOI] [PubMed] [Google Scholar]
  2. Blackburn M. R., Gao X., Airhart M. J., Skalko R. G., Thompson L. F., Knudsen T. B. Adenosine levels in the postimplantation mouse uterus: quantitation by HPLC-fluorometric detection and spatiotemporal regulation by 5'-nucleotidase and adenosine deaminase. Dev Dyn. 1992 Jun;194(2):155–168. doi: 10.1002/aja.1001940208. [DOI] [PubMed] [Google Scholar]
  3. Bruns R. F., Lu G. H., Pugsley T. A. Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol. 1986 Apr;29(4):331–346. [PubMed] [Google Scholar]
  4. Bursch W., Paffe S., Putz B., Barthel G., Schulte-Hermann R. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis. 1990 May;11(5):847–853. doi: 10.1093/carcin/11.5.847. [DOI] [PubMed] [Google Scholar]
  5. Chaffin K. E., Beals C. R., Wilkie T. M., Forbush K. A., Simon M. I., Perlmutter R. M. Dissection of thymocyte signaling pathways by in vivo expression of pertussis toxin ADP-ribosyltransferase. EMBO J. 1990 Dec;9(12):3821–3829. doi: 10.1002/j.1460-2075.1990.tb07600.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chechik B. E., Schrader W. P., Minowada J. An immunomorphologic study of adenosine deaminase distribution in human thymus tissue, normal lymphocytes, and hematopoietic cell lines. J Immunol. 1981 Mar;126(3):1003–1007. [PubMed] [Google Scholar]
  7. Fox R. I., Thompson L. F., Huddlestone J. R. T gamma cells express T lymphocyte-associated antigens. J Immunol. 1981 May;126(5):2062–2063. [PubMed] [Google Scholar]
  8. Herman A., Kappler J. W., Marrack P., Pullen A. M. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu Rev Immunol. 1991;9:745–772. doi: 10.1146/annurev.iy.09.040191.003525. [DOI] [PubMed] [Google Scholar]
  9. Hershfield M. S. Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine and adenine arabinoside. A basis for direct toxic effects of analogs of adenosine. J Biol Chem. 1979 Jan 10;254(1):22–25. [PubMed] [Google Scholar]
  10. Hershfield M. S., Kredich N. M., Ownby D. R., Ownby H., Buckley R. In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine in adenosine deaminase-deficient patients. J Clin Invest. 1979 Apr;63(4):807–811. doi: 10.1172/JCI109367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirschhorn R. Adenosine deaminase deficiency: molecular basis and recent developments. Clin Immunol Immunopathol. 1995 Sep;76(3 Pt 2):S219–S227. doi: 10.1016/s0090-1229(95)90288-0. [DOI] [PubMed] [Google Scholar]
  12. Hirschhorn R., Roegner-Maniscalco V., Kuritsky L., Rosen F. S. Bone marrow transplantation only partially restores purine metabolites to normal in adenosine deaminase-deficient patients. J Clin Invest. 1981 Dec;68(6):1387–1393. doi: 10.1172/JCI110389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kisielow P., Blüthmann H., Staerz U. D., Steinmetz M., von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 1988 Jun 23;333(6175):742–746. doi: 10.1038/333742a0. [DOI] [PubMed] [Google Scholar]
  14. Kizaki H., Shimada H., Ohsaka F., Sakurada T. Adenosine, deoxyadenosine, and deoxyguanosine induce DNA cleavage in mouse thymocytes. J Immunol. 1988 Sep 1;141(5):1652–1657. [PubMed] [Google Scholar]
  15. Kizaki H., Suzuki K., Tadakuma T., Ishimura Y. Adenosine receptor-mediated accumulation of cyclic AMP-induced T-lymphocyte death through internucleosomal DNA cleavage. J Biol Chem. 1990 Mar 25;265(9):5280–5284. [PubMed] [Google Scholar]
  16. Knudsen T. B., Winters R. S., Otey S. K., Blackburn M. R., Airhart M. J., Church J. K., Skalko R. G. Effects of (R)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology. 1992 Jan;45(1):91–103. doi: 10.1002/tera.1420450109. [DOI] [PubMed] [Google Scholar]
  17. Lalli E., Sassone-Corsi P., Ceredig R. Block of T lymphocyte differentiation by activation of the cAMP-dependent signal transduction pathway. EMBO J. 1996 Feb 1;15(3):528–537. [PMC free article] [PubMed] [Google Scholar]
  18. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ma D. D., Sylwestrowicz T. A., Granger S., Massaia M., Franks R., Janossy G., Hoffbrand A. V. Distribution of terminal deoxynucleotidyl transferase and purine degradative and synthetic enzymes in subpopulations of human thymocytes. J Immunol. 1982 Oct;129(4):1430–1435. [PubMed] [Google Scholar]
  20. McConkey D. J., Orrenius S., Jondal M. Agents that elevate cAMP stimulate DNA fragmentation in thymocytes. J Immunol. 1990 Aug 15;145(4):1227–1230. [PubMed] [Google Scholar]
  21. Migchielsen A. A., Breuer M. L., van Roon M. A., te Riele H., Zurcher C., Ossendorp F., Toutain S., Hershfield M. S., Berns A., Valerio D. Adenosine-deaminase-deficient mice die perinatally and exhibit liver-cell degeneration, atelectasis and small intestinal cell death. Nat Genet. 1995 Jul;10(3):279–287. doi: 10.1038/ng0795-279. [DOI] [PubMed] [Google Scholar]
  22. Misumi Y., Ogata S., Ohkubo K., Hirose S., Ikehara Y. Primary structure of human placental 5'-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem. 1990 Aug 17;191(3):563–569. doi: 10.1111/j.1432-1033.1990.tb19158.x. [DOI] [PubMed] [Google Scholar]
  23. Mitchell B. S., Mejias E., Daddona P. E., Kelley W. N. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5011–5014. doi: 10.1073/pnas.75.10.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  25. Palmer T. M., Stiles G. L. Adenosine receptors. Neuropharmacology. 1995 Jul;34(7):683–694. doi: 10.1016/0028-3908(95)00044-7. [DOI] [PubMed] [Google Scholar]
  26. Puffinbarger N. K., Hansen K. R., Resta R., Laurent A. B., Knudsen T. B., Madara J. L., Thompson L. F. Production and characterization of multiple antigenic peptide antibodies to the adenosine A2b receptor. Mol Pharmacol. 1995 Jun;47(6):1126–1132. [PubMed] [Google Scholar]
  27. Ratter F., Germer M., Fischbach T., Schulze-Osthoff K., Peter M. E., Dröge W., Krammer P. H., Lehmann V. S-adenosylhomocysteine as a physiological modulator of Apo-1-mediated apoptosis. Int Immunol. 1996 Jul;8(7):1139–1147. doi: 10.1093/intimm/8.7.1139. [DOI] [PubMed] [Google Scholar]
  28. Seto S., Carrera C. J., Kubota M., Wasson D. B., Carson D. A. Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J Clin Invest. 1985 Feb;75(2):377–383. doi: 10.1172/JCI111710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Snyder F. F., Lukey T. Purine ribonucleoside and deoxyribonucleoside metabolism in thymocytes. Adv Exp Med Biol. 1979;122B:259–264. doi: 10.1007/978-1-4684-8559-2_42. [DOI] [PubMed] [Google Scholar]
  30. Stehle J. H., Rivkees S. A., Lee J. J., Weaver D. R., Deeds J. D., Reppert S. M. Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol Endocrinol. 1992 Mar;6(3):384–393. doi: 10.1210/mend.6.3.1584214. [DOI] [PubMed] [Google Scholar]
  31. Thompson L. F., Boss G. R., Spiegelberg H. L., Jansen I. V., O'Connor R. D., Waldmann T. A., Hamburger R. N., Seegmiller J. E. Ecto-5'-nucleotidase activity in T and B lymphocytes from normal subjects and patients with congenital X-linked agammaglobulinemia. J Immunol. 1979 Dec;123(6):2475–2478. [PubMed] [Google Scholar]
  32. Thompson L. F. Ecto-5'-nucleotidase can provide the total purine requirements of mitogen-stimulated human T cells and rapidly dividing human B lymphoblastoid cells. J Immunol. 1985 Jun;134(6):3794–3797. [PubMed] [Google Scholar]
  33. Thomson L. F., Ruedi J. M., Glass A., Moldenhauer G., Moller P., Low M. G., Klemens M. R., Massaia M., Lucas A. H. Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5'-nucleotidase (CD73). Tissue Antigens. 1990 Jan;35(1):9–19. doi: 10.1111/j.1399-0039.1990.tb01750.x. [DOI] [PubMed] [Google Scholar]
  34. Ullman B., Gudas L. J., Cohen A., Martin D. W., Jr Deoxyadenosine metabolism and cytotoxicity in cultured mouse T lymphoma cells: a model for immunodeficiency disease. Cell. 1978 Jun;14(2):365–375. doi: 10.1016/0092-8674(78)90122-8. [DOI] [PubMed] [Google Scholar]
  35. Widnell C. C., Schneider Y. J., Pierre B., Baudhuin P., Trouet A. Evidence for a continual exchange of 5'-nucleotidase between the cell surface and cytoplasmic membranes in cultured rat fibroblasts. Cell. 1982 Jan;28(1):61–70. doi: 10.1016/0092-8674(82)90375-0. [DOI] [PubMed] [Google Scholar]
  36. Wildin R. S., Garvin A. M., Pawar S., Lewis D. B., Abraham K. M., Forbush K. A., Ziegler S. F., Allen J. M., Perlmutter R. M. Developmental regulation of lck gene expression in T lymphocytes. J Exp Med. 1991 Feb 1;173(2):383–393. doi: 10.1084/jem.173.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES