Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 15;99(4):745–751. doi: 10.1172/JCI119220

Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart.

R Tian 1, M E Christe 1, M Spindler 1, J C Hopkins 1, J M Halow 1, S A Camacho 1, J S Ingwall 1
PMCID: PMC507859  PMID: 9045879

Abstract

Sarcomere relaxation depends on dissociation of actin and myosin, which is regulated by a number of factors, including intracellular [MgATP] as well as MgATP hydrolysis products [MgADP] and inorganic phosphate [Pi], pHi, and cytosolic calcium concentration ([Ca2+]c). To distinguish the contribution of MgADP from the other regulators in the development of diastolic dysfunction, we used a strategy to increase free [MgADP] without changing [MgATP], [Pi], or pHi. This was achieved by applying a low dose of iodoacetamide to selectively inhibit the creatine kinase activity in isolated perfused rat hearts. [MgATP], [MgADP], [Pi], and [H+] were determined using 31P NMR spectroscopy. The [Ca2+]c and the glycolytic rate were also measured. We observed an approximately threefold increase in left ventricular end diastolic pressure (LVEDP) and 38% increase in the time constant of pressure decay (P < 0.05) in these hearts, indicating a significant impairment of diastolic function. The increase in LVEDP was closely related to the increase in free [MgADP]. Rate of glycolysis was not changed, and [Ca2+]c increased by 16%, which cannot explain the severity of diastolic dysfunction. Thus, our data indicate that MgADP contributes significantly to diastolic dysfunction, possibly by slowing the rate of cross-bridge cycling.

Full Text

The Full Text of this article is available as a PDF (175.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandes R., Figueredo V. M., Camacho S. A., Baker A. J., Weiner M. W. Investigation of factors affecting fluorometric quantitation of cytosolic [Ca2+] in perfused hearts. Biophys J. 1993 Nov;65(5):1983–1993. doi: 10.1016/S0006-3495(93)81275-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brandes R., Figueredo V. M., Camacho S. A., Baker A. J., Weiner M. W. Quantitation of cytosolic [Ca2+] in whole perfused rat hearts using Indo-1 fluorometry. Biophys J. 1993 Nov;65(5):1973–1982. doi: 10.1016/S0006-3495(93)81274-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang K. C., Schreur J. H., Weiner M. W., Camacho S. A. Impaired Ca2+ handling is an early manifestation of pressure-overload hypertrophy in rat hearts. Am J Physiol. 1996 Jul;271(1 Pt 2):H228–H234. doi: 10.1152/ajpheart.1996.271.1.H228. [DOI] [PubMed] [Google Scholar]
  4. Chase P. B., Kushmerick M. J. Effect of physiological ADP concentrations on contraction of single skinned fibers from rabbit fast and slow muscles. Am J Physiol. 1995 Feb;268(2 Pt 1):C480–C489. doi: 10.1152/ajpcell.1995.268.2.C480. [DOI] [PubMed] [Google Scholar]
  5. Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cunningham M. J., Apstein C. S., Weinberg E. O., Vogel W. M., Lorell B. H. Influence of glucose and insulin on the exaggerated diastolic and systolic dysfunction of hypertrophied rat hearts during hypoxia. Circ Res. 1990 Feb;66(2):406–415. doi: 10.1161/01.res.66.2.406. [DOI] [PubMed] [Google Scholar]
  7. Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dantzig J. A., Hibberd M. G., Trentham D. R., Goldman Y. E. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J Physiol. 1991 Jan;432:639–680. doi: 10.1113/jphysiol.1991.sp018405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisenberg E., Greene L. E. The relation of muscle biochemistry to muscle physiology. Annu Rev Physiol. 1980;42:293–309. doi: 10.1146/annurev.ph.42.030180.001453. [DOI] [PubMed] [Google Scholar]
  10. Figueredo V. M., Brandes R., Weiner M. W., Massie B. M., Camacho S. A. Endocardial versus epicardial differences of intracellular free calcium under normal and ischemic conditions in perfused rat hearts. Circ Res. 1993 May;72(5):1082–1090. doi: 10.1161/01.res.72.5.1082. [DOI] [PubMed] [Google Scholar]
  11. Hamman B. L., Bittl J. A., Jacobus W. E., Allen P. D., Spencer R. S., Tian R., Ingwall J. S. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Am J Physiol. 1995 Sep;269(3 Pt 2):H1030–H1036. doi: 10.1152/ajpheart.1995.269.3.H1030. [DOI] [PubMed] [Google Scholar]
  12. Hibberd M. G., Trentham D. R. Relationships between chemical and mechanical events during muscular contraction. Annu Rev Biophys Biophys Chem. 1986;15:119–161. doi: 10.1146/annurev.bb.15.060186.001003. [DOI] [PubMed] [Google Scholar]
  13. Kagaya Y., Weinberg E. O., Ito N., Mochizuki T., Barry W. H., Lorell B. H. Glycolytic inhibition: effects on diastolic relaxation and intracellular calcium handling in hypertrophied rat ventricular myocytes. J Clin Invest. 1995 Jun;95(6):2766–2776. doi: 10.1172/JCI117980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kammermeier H. High energy phosphate of the myocardium: concentration versus free energy change. Basic Res Cardiol. 1987;82 (Suppl 2):31–36. doi: 10.1007/978-3-662-11289-2_3. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lawson J. W., Veech R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
  17. Ma Y. Z., Taylor E. W. Kinetic mechanism of myofibril ATPase. Biophys J. 1994 May;66(5):1542–1553. doi: 10.1016/S0006-3495(94)80945-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oblinger M. M., Foe L. G., Kwiatkowska D., Kemp R. G. Phosphofructokinase in the rat nervous system: regional differences in activity and characteristics of axonal transport. J Neurosci Res. 1988 Sep;21(1):25–34. doi: 10.1002/jnr.490210105. [DOI] [PubMed] [Google Scholar]
  19. Owen P., Dennis S., Opie L. H. Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Circ Res. 1990 Feb;66(2):344–354. doi: 10.1161/01.res.66.2.344. [DOI] [PubMed] [Google Scholar]
  20. Polimeni P. I., Buraczewski S. I. Expansion of extracellular tracer spaces in the isolated heart perfused with crystalloid solutions: expansion of extracellular space, trans-sarcolemmal leakage, or both? J Mol Cell Cardiol. 1988 Jan;20(1):15–22. doi: 10.1016/s0022-2828(88)80175-5. [DOI] [PubMed] [Google Scholar]
  21. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  22. Rosalki S. B. An improved procedure for serum creatine phosphokinase determination. J Lab Clin Med. 1967 Apr;69(4):696–705. [PubMed] [Google Scholar]
  23. Saddik M., Lopaschuk G. D. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem. 1991 May 5;266(13):8162–8170. [PubMed] [Google Scholar]
  24. Schreur J. H., Figueredo V. M., Miyamae M., Shames D. M., Baker A. J., Camacho S. A. Cytosolic and mitochondrial [Ca2+] in whole hearts using indo-1 acetoxymethyl ester: effects of high extracellular Ca2+. Biophys J. 1996 Jun;70(6):2571–2580. doi: 10.1016/S0006-3495(96)79828-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Siemankowski R. F., Wiseman M. O., White H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658–662. doi: 10.1073/pnas.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Taylor E. W. Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem. 1979;6(2):103–164. doi: 10.3109/10409237909102562. [DOI] [PubMed] [Google Scholar]
  27. Tian R., Gaudron P., Neubauer S., Hu K., Ertl G. Alterations of performance and oxygen utilization in chronically infarcted rat hearts. J Mol Cell Cardiol. 1996 Feb;28(2):321–330. doi: 10.1006/jmcc.1996.0030. [DOI] [PubMed] [Google Scholar]
  28. Tian R., Ingwall J. S. Energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol. 1996 Apr;270(4 Pt 2):H1207–H1216. doi: 10.1152/ajpheart.1996.270.4.H1207. [DOI] [PubMed] [Google Scholar]
  29. Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
  30. Yamashita H., Sata M., Sugiura S., Momomura S., Serizawa T., Iizuka M. ADP inhibits the sliding velocity of fluorescent actin filaments on cardiac and skeletal myosins. Circ Res. 1994 Jun;74(6):1027–1033. doi: 10.1161/01.res.74.6.1027. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES