Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Feb 15;99(4):799–804. doi: 10.1172/JCI119226

Prevention of hepatic tumor metastases in rats with herpes viral vaccines and gamma-interferon.

H M Karpoff 1, M D'Angelica 1, S Blair 1, M D Brownlee 1, H Federoff 1, Y Fong 1
PMCID: PMC507865  PMID: 9045885

Abstract

Previous studies showed that gammaIFN decreases metastatic hepatic tumor growth by stimulating Kupffer cells (KC). The present studies examine whether lymphocyte stimulation via cells engineered to secrete GM-CSF or IL-2 decreases hepatic tumor growth, and whether stimulation of both macrophages and lymphocytes is more effective than either individually. Rats were immunized with irradiated hepatoma cells transduced by herpes viral amplicon vectors containing the genes for GM-CSF, IL-2 or LacZ. On day 18, half of each group was treated with 5 x 10(4) U gammaIFN, or saline intraperitoneally for 3 d. On day 21, all rats received 5 x 10(5) hepatoma cells intrasplenically. On day 41, rats were killed and tumor nodules were counted. Separate rats underwent splenocyte and KC harvest for assessment of lymphocyte- and macrophage-mediated tumor cell kill in vitro. GM-CSF or IL-2 vaccines or gammaIFN decreased tumor nodules significantly (GM-CSF 13+/-4, IL-2 14+/-6 vs. control 75+/-24, P < 0.001). Combination therapy was more effective, and completely eliminated tumor in 4 of 12 IFN-GM-CSF and 8 of 11 IFN-IL-2 animals. Additional rats underwent partial hepatectomy, an immunosuppressive procedure known to accelerate the growth of hepatic tumor, following tumor challenge. Therapy was equally effective in this immunosuppressive setting. Vaccination is associated with enhancement of splenocyte-mediated tumoricidal activity, whereas the effect of gammaIFN is mediated by KC. GM-CSF and IL-2 vaccine therapy and pretreatment with gammaIFN represent effective strategies in reducing hepatic tumor. Combination therapy targets both lymphocytes and macrophages, and is more effective in reducing tumor than either therapy alone.

Full Text

The Full Text of this article is available as a PDF (184.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe J., Wakimoto H., Yoshida Y., Aoyagi M., Hirakawa K., Hamada H. Antitumor effect induced by granulocyte/macrophage-colony-stimulating factor gene-modified tumor vaccination: comparison of adenovirus- and retrovirus-mediated genetic transduction. J Cancer Res Clin Oncol. 1995;121(9-10):587–592. doi: 10.1007/BF01197775. [DOI] [PubMed] [Google Scholar]
  2. Balemans L. T., Mattijssen V., Steerenberg P. A., Van Driel B. E., De Mulder P. H., Den Otter W. Locoregional therapy with polyethylene-glycol-modified interleukin-2 of an intradermally growing hepatocellular carcinoma in the guinea pig induces T-cell-mediated antitumor activity. Cancer Immunol Immunother. 1993 Jul;37(1):7–14. doi: 10.1007/BF01516936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black P. L., Phillips H., Tribble H. R., Pennington R., Schneider M., Talmadge J. E. Antitumor response to recombinant murine interferon gamma correlates with enhanced immune function of organ-associated, but not recirculating cytolytic T lymphocytes and macrophages. Cancer Immunol Immunother. 1993 Oct;37(5):299–306. doi: 10.1007/BF01518452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bubenik J., Voitenok N. N., Kieler J., Prassolov V. S., Chumakov P. M., Bubenikova D., Simova J., Jandlova T. Local administration of cells containing an inserted IL-2 gene and producing IL-2 inhibits growth of human tumours in nu/nu mice. Immunol Lett. 1988 Dec;19(4):279–282. doi: 10.1016/0165-2478(88)90155-1. [DOI] [PubMed] [Google Scholar]
  5. Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., Mulligan R. C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3539–3543. doi: 10.1073/pnas.90.8.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gansbacher B., Zier K., Daniels B., Cronin K., Bannerji R., Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990 Oct 1;172(4):1217–1224. doi: 10.1084/jem.172.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geller A. I., Keyomarsi K., Bryan J., Pardee A. B. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: potential applications to human gene therapy and neuronal physiology. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8950–8954. doi: 10.1073/pnas.87.22.8950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iwanuma Y., Kato K., Yagita H., Okumura K. Induction of tumor-specific cytotoxic T lymphocytes and natural killer cells by tumor cells transfected with the interleukin-2 gene. Cancer Immunol Immunother. 1995 Jan;40(1):17–23. doi: 10.1007/BF01517231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson P. A., Miyanohara A., Levine F., Cahill T., Friedmann T. Cytotoxicity of a replication-defective mutant of herpes simplex virus type 1. J Virol. 1992 May;66(5):2952–2965. doi: 10.1128/jvi.66.5.2952-2965.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Karpoff H. M., Tung C., Ng B., Fong Y. Interferon gamma protects against hepatic tumor growth in rats by increasing Kupffer cell tumoricidal activity. Hepatology. 1996 Aug;24(2):374–379. doi: 10.1002/hep.510240214. [DOI] [PubMed] [Google Scholar]
  11. Kawada N., Mizoguchi Y., Kobayashi K., Morisawa S., Monna T., Yamamoto S. Interferon gamma modulates production of interleukin 1 and tumor necrosis factor by murine Kupffer cells. Liver. 1991 Feb;11(1):42–47. doi: 10.1111/j.1600-0676.1991.tb00489.x. [DOI] [PubMed] [Google Scholar]
  12. Kutteh W. H., Rainey W. E., Carr B. R. Regulation of interleukin-6 production in human fetal Kupffer cells. Scand J Immunol. 1991 May;33(5):607–613. doi: 10.1111/j.1365-3083.1991.tb02532.x. [DOI] [PubMed] [Google Scholar]
  13. Ley V., Langlade-Demoyen P., Kourilsky P., Larsson-Sciard E. L. Interleukin 2-dependent activation of tumor-specific cytotoxic T lymphocytes in vivo. Eur J Immunol. 1991 Mar;21(3):851–854. doi: 10.1002/eji.1830210350. [DOI] [PubMed] [Google Scholar]
  14. Loizidou M. C., Lawrance R. J., Holt S., Carty N. J., Cooper A. J., Alexander P., Taylor I. Facilitation by partial hepatectomy of tumor growth within the rat liver following intraportal injection of syngeneic tumor cells. Clin Exp Metastasis. 1991 Jul-Aug;9(4):335–349. doi: 10.1007/BF01769354. [DOI] [PubMed] [Google Scholar]
  15. Lu B., Federoff H. J. Herpes simplex virus type 1 amplicon vectors with glucocorticoid-inducible gene expression. Hum Gene Ther. 1995 Apr;6(4):419–428. doi: 10.1089/hum.1995.6.4-419. [DOI] [PubMed] [Google Scholar]
  16. Margolin K. A., Doroshow J. H., Akman S. A., Leong L. A., Morgan R. J., Raschko J., Somlo G., Mills B., Goldberg D., Sniecinski I. Phase I trial of interleukin-2 plus gamma-interferon. J Immunother (1991) 1992 Jan;11(1):50–55. doi: 10.1097/00002371-199201000-00006. [DOI] [PubMed] [Google Scholar]
  17. Mastrantonio P., Spigaglia P., Sebastianelli A. Susceptibility patterns and characterization of beta-lactamases in clinical isolates of Bacteroides fragilis. Eur J Clin Microbiol Infect Dis. 1994 Jun;13(6):475–480. doi: 10.1007/BF01974637. [DOI] [PubMed] [Google Scholar]
  18. Mesri E. A., Federoff H. J., Brownlee M. Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice. Circ Res. 1995 Feb;76(2):161–167. doi: 10.1161/01.res.76.2.161. [DOI] [PubMed] [Google Scholar]
  19. Miyanohara A., Johnson P. A., Elam R. L., Dai Y., Witztum J. L., Verma I. M., Friedmann T. Direct gene transfer to the liver with herpes simplex virus type 1 vectors: transient production of physiologically relevant levels of circulating factor IX. New Biol. 1992 Mar;4(3):238–246. [PubMed] [Google Scholar]
  20. Paterson T., Everett R. D. A prominent serine-rich region in Vmw175, the major transcriptional regulator protein of herpes simplex virus type 1, is not essential for virus growth in tissue culture. J Gen Virol. 1990 Aug;71(Pt 8):1775–1783. doi: 10.1099/0022-1317-71-8-1775. [DOI] [PubMed] [Google Scholar]
  21. Pearson H. J., Anderson J., Chamberlain J., Bell P. R. The effect of Kupffer cell stimulation or depression on the development of liver metastases in the rat. Cancer Immunol Immunother. 1986;23(3):214–216. doi: 10.1007/BF00205652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Picardo A., Fong Y., Karpoff H. M., Yeh S., Blumgart L. H., Brennan M. F. Factors influencing hepatocyte trafficking during allogeneic hepatocyte transplantation: improved liver sequestration with isolated perfusion. J Surg Res. 1996 Jul 1;63(2):452–456. doi: 10.1006/jsre.1996.0291. [DOI] [PubMed] [Google Scholar]
  23. Raper S. E., Grossman M., Rader D. J., Thoene J. G., Clark B. J., 3rd, Kolansky D. M., Muller D. W., Wilson J. M. Safety and feasibility of liver-directed ex vivo gene therapy for homozygous familial hypercholesterolemia. Ann Surg. 1996 Feb;223(2):116–126. doi: 10.1097/00000658-199602000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rubin J. T. Interleukin-2: its biology and clinical application in patients with cancer. Cancer Invest. 1993;11(4):460–472. doi: 10.3109/07357909309018878. [DOI] [PubMed] [Google Scholar]
  25. Schuurman B., Heuff G., Beelen R. H., Meyer S. Enhanced killing capacity of human Kupffer cells after activation with human granulocyte/macrophage-colony-stimulating factor and interferon gamma. Cancer Immunol Immunother. 1994 Sep;39(3):179–184. doi: 10.1007/BF01533384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tung C., Federoff H. J., Brownlee M., Karpoff H., Weigel T., Brennan M. F., Fong Y. Rapid production of interleukin-2-secreting tumor cells by herpes simplex virus-mediated gene transfer: implications for autologous vaccine production. Hum Gene Ther. 1996 Dec 1;7(18):2217–2224. doi: 10.1089/hum.1996.7.18-2217. [DOI] [PubMed] [Google Scholar]
  27. Vieweg J., Rosenthal F. M., Bannerji R., Heston W. D., Fair W. R., Gansbacher B., Gilboa E. Immunotherapy of prostate cancer in the Dunning rat model: use of cytokine gene modified tumor vaccines. Cancer Res. 1994 Apr 1;54(7):1760–1765. [PubMed] [Google Scholar]
  28. West M. A., Keller G. A., Cerra F. B., Simmons R. L. Killed Escherichia coli stimulates macrophage-mediated alterations in hepatocellular function during in vitro coculture: a mechanism of altered liver function in sepsis. Infect Immun. 1985 Sep;49(3):563–570. doi: 10.1128/iai.49.3.563-570.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamashita R., Hiraoka T., Kamimoto I., Miyauchi Y. Prevention of growth of metastases in rat liver by perioperative immunoactivation. Cancer Res. 1986 Jun;46(6):3138–3141. [PubMed] [Google Scholar]
  30. Zhang F., zur Hausen A., Hoffmann R., Grewe M., Decker K. Rat liver macrophages express the 55 kDa tumor necrosis factor receptor: modulation by interferon-gamma, lipopolysaccharide and tumor necrosis factor-alpha. Biol Chem Hoppe Seyler. 1994 Apr;375(4):249–254. doi: 10.1515/bchm3.1994.375.4.249. [DOI] [PubMed] [Google Scholar]
  31. Zhou X. D., Yu Y. Q., Tang Z. Y., Yang B. H., Lu J. Z., Lin Z. Y., Ma Z. C., Xu D. B., Zhang B. H., Zheng Y. X. Surgical treatment of recurrent hepatocellular carcinoma. Hepatogastroenterology. 1993 Aug;40(4):333–336. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES