Abstract
Defining the mechanism for regulation of arachidonic acid (AA) release is important for understanding cellular production of AA metabolites, such as prostaglandins and leukotrienes. Here we have investigated the differential roles of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase in the regulation of cytosolic phospholipase A2 (cPLA2)-mediated AA release by P2U-purinergic receptors in MDCK-D1 cells. Treatment of cells with the P2U receptor agonists ATP and UTP increased PLA2 activity in subsequently prepared cell lysates. PLA2 activity was inhibited by the cPLA2 inhibitor AACOCF3, as was AA release in intact cells. Increased PLA2 activity was recovered in anti-cPLA2 immunoprecipitates of lysates derived from nucleotide-treated cells, and was lost from the immunodepleted lysates. Thus, cPLA2 is responsible for AA release by P2U receptors in MDCK-D1 cells. P2U receptors also activated MAP kinase. This activation was PKC-dependent since phorbol 12-myristate 13-acetate (PMA) promoted down-regulation of PKC-eliminated MAP kinase activation by ATP or UTP. Treatment of cells with the MAP kinase cascade inhibitor PD098059, the PKC inhibitor GF109203X, or down-regulation of PKC by PMA treatment, all suppressed AA release promoted by ATP or UTP, suggesting that both MAP kinase and PKC are involved in the regulation of cPLA2 by P2U receptors. Differential effects of GF109203X on cPLA2-mediated AA release and MAP kinase activation, however, were observed: at low concentrations, GF109203X inhibited AA release promoted by ATP, UTP, or PMA without affecting MAP kinase activation. Since GF109203X is more selective for PKCalpha, PKCalpha may act independently of MAP kinase to regulate cPLA2 in MDCK-D1 cells. This conclusion is further supported by data showing that PMA-promoted AA release, but not MAP kinase activation, was suppressed in cells in which PKCalpha expression was decreased by antisense transfection. Based on these data, we propose a model whereby both MAP kinase and PKC are required for cPLA2-mediated AA release by P2U receptors in MDCK-D1 cells. PKC plays a dual role in this process through the utilization of different isoforms: PKCalpha regulates cPLA2-mediated AA release independently of MAP kinase, while other PKC isoforms act through MAP kinase activation. This model contrasts with our recently demonstrated mechanism (J. Clin. Invest. 99:1302-1310.) whereby alpha1-adrenergic receptors in the same cell type regulate cPLA2-mediated AA release only through sequential activation of PKC and MAP kinase.
Full Text
The Full Text of this article is available as a PDF (379.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackermann E. J., Conde-Frieboes K., Dennis E. A. Inhibition of macrophage Ca(2+)-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. J Biol Chem. 1995 Jan 6;270(1):445–450. doi: 10.1074/jbc.270.1.445. [DOI] [PubMed] [Google Scholar]
- Alblas J., van Corven E. J., Hordijk P. L., Milligan G., Moolenaar W. H. Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by alpha 2-adrenergic receptors expressed in fibroblasts. J Biol Chem. 1993 Oct 25;268(30):22235–22238. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Barbour S. E., Dennis E. A. Antisense inhibition of group II phospholipase A2 expression blocks the production of prostaglandin E2 by P388D1 cells. J Biol Chem. 1993 Oct 15;268(29):21875–21882. [PubMed] [Google Scholar]
- Bruner G., Murphy S. ATP-evoked arachidonic acid mobilization in astrocytes is via a P2Y-purinergic receptor. J Neurochem. 1990 Nov;55(5):1569–1575. doi: 10.1111/j.1471-4159.1990.tb04940.x. [DOI] [PubMed] [Google Scholar]
- Börsch-Haubold A. G., Kramer R. M., Watson S. P. Cytosolic phospholipase A2 is phosphorylated in collagen- and thrombin-stimulated human platelets independent of protein kinase C and mitogen-activated protein kinase. J Biol Chem. 1995 Oct 27;270(43):25885–25892. doi: 10.1074/jbc.270.43.25885. [DOI] [PubMed] [Google Scholar]
- Clark K. J., Murray A. W. Evidence that the bradykinin-induced activation of phospholipase D and of the mitogen-activated protein kinase cascade involve different protein kinase C isoforms. J Biol Chem. 1995 Mar 31;270(13):7097–7103. doi: 10.1074/jbc.270.13.7097. [DOI] [PubMed] [Google Scholar]
- Clerk A., Bogoyevitch M. A., Anderson M. B., Sugden P. H. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem. 1994 Dec 30;269(52):32848–32857. [PubMed] [Google Scholar]
- Cockcroft S., Stutchfield J. The receptors for ATP and fMetLeuPhe are independently coupled to phospholipases C and A2 via G-protein(s). Relationship between phospholipase C and A2 activation and exocytosis in HL60 cells and human neutrophils. Biochem J. 1989 Nov 1;263(3):715–723. doi: 10.1042/bj2630715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
- Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
- Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
- Firestein B. L., Xing M., Hughes R. J., Corvera C. U., Insel P. A. Heterogeneity of P2u- and P2y-purinergic receptor regulation of phospholipases in MDCK cells. Am J Physiol. 1996 Sep;271(3 Pt 2):F610–F618. doi: 10.1152/ajprenal.1996.271.3.F610. [DOI] [PubMed] [Google Scholar]
- Godson C., Bell K. S., Insel P. A. Inhibition of expression of protein kinase C alpha by antisense cDNA inhibits phorbol ester-mediated arachidonate release. J Biol Chem. 1993 Jun 5;268(16):11946–11950. [PubMed] [Google Scholar]
- Gstraunthaler G. J. Epithelial cells in tissue culture. Ren Physiol Biochem. 1988 Jan-Feb;11(1-2):1–42. doi: 10.1159/000173147. [DOI] [PubMed] [Google Scholar]
- Harden T. K., Boyer J. L., Nicholas R. A. P2-purinergic receptors: subtype-associated signaling responses and structure. Annu Rev Pharmacol Toxicol. 1995;35:541–579. doi: 10.1146/annurev.pa.35.040195.002545. [DOI] [PubMed] [Google Scholar]
- Kramer R. M., Roberts E. F., Manetta J. V., Hyslop P. A., Jakubowski J. A. Thrombin-induced phosphorylation and activation of Ca(2+)-sensitive cytosolic phospholipase A2 in human platelets. J Biol Chem. 1993 Dec 15;268(35):26796–26804. [PubMed] [Google Scholar]
- Kramer R. M., Sharp J. D. Recent insights into the structure, function and biology of cPLA2. Agents Actions Suppl. 1995;46:65–76. doi: 10.1007/978-3-0348-7276-8_7. [DOI] [PubMed] [Google Scholar]
- Lazarowski E. R., Boucher R. C., Harden T. K. Calcium-dependent release of arachidonic acid in response to purinergic receptor activation in airway epithelium. Am J Physiol. 1994 Feb;266(2 Pt 1):C406–C415. doi: 10.1152/ajpcell.1994.266.2.C406. [DOI] [PubMed] [Google Scholar]
- Lehman J. J., Brown K. A., Ramanadham S., Turk J., Gross R. W. Arachidonic acid release from aortic smooth muscle cells induced by [Arg8]vasopressin is largely mediated by calcium-independent phospholipase A2. J Biol Chem. 1993 Oct 5;268(28):20713–20716. [PubMed] [Google Scholar]
- Lin L. L., Lin A. Y., Knopf J. L. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6147–6151. doi: 10.1073/pnas.89.13.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
- Lin T. A., Lustig K. D., Sportiello M. G., Weisman G. A., Sun G. Y. Signal transduction pathways coupled to a P2U receptor in neuroblastoma x glioma (NG108-15) cells. J Neurochem. 1993 Mar;60(3):1115–1125. doi: 10.1111/j.1471-4159.1993.tb03262.x. [DOI] [PubMed] [Google Scholar]
- Meier K. E., Sperling D. M., Insel P. A. Agonist-mediated regulation of alpha 1- and beta 2-adrenergic receptors in cloned MDCK cells. Am J Physiol. 1985 Jul;249(1 Pt 1):C69–C77. doi: 10.1152/ajpcell.1985.249.1.C69. [DOI] [PubMed] [Google Scholar]
- Murakami M., Kudo I., Inoue K. Molecular nature of phospholipases A2 involved in prostaglandin I2 synthesis in human umbilical vein endothelial cells. Possible participation of cytosolic and extracellular type II phospholipases A2. J Biol Chem. 1993 Jan 15;268(2):839–844. [PubMed] [Google Scholar]
- Nemenoff R. A., Winitz S., Qian N. X., Van Putten V., Johnson G. L., Heasley L. E. Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem. 1993 Jan 25;268(3):1960–1964. [PubMed] [Google Scholar]
- Piomelli D. Arachidonic acid in cell signaling. Curr Opin Cell Biol. 1993 Apr;5(2):274–280. doi: 10.1016/0955-0674(93)90116-8. [DOI] [PubMed] [Google Scholar]
- Posada J., Cooper J. A. Molecular signal integration. Interplay between serine, threonine, and tyrosine phosphorylation. Mol Biol Cell. 1992 Jun;3(6):583–592. doi: 10.1091/mbc.3.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post S. R., Jacobson J. P., Insel P. A. P2 purinergic receptor agonists enhance cAMP production in Madin-Darby canine kidney epithelial cells via an autocrine/paracrine mechanism. J Biol Chem. 1996 Jan 26;271(4):2029–2032. doi: 10.1074/jbc.271.4.2029. [DOI] [PubMed] [Google Scholar]
- Qiu Z. H., Leslie C. C. Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J Biol Chem. 1994 Jul 29;269(30):19480–19487. [PubMed] [Google Scholar]
- Sa G., Murugesan G., Jaye M., Ivashchenko Y., Fox P. L. Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. J Biol Chem. 1995 Feb 3;270(5):2360–2366. doi: 10.1074/jbc.270.5.2360. [DOI] [PubMed] [Google Scholar]
- Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
- Slivka S. R., Insel P. A. Alpha 1-adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. Possible parallel activation of phospholipase C and phospholipase A2. J Biol Chem. 1987 Mar 25;262(9):4200–4207. [PubMed] [Google Scholar]
- Smallridge R. C., Gist I. D. P2-purinergic stimulation of iodide efflux in FRTL-5 rat thyroid cells involves parallel activation of PLC and PLA2. Am J Physiol. 1994 Aug;267(2 Pt 1):E323–E330. doi: 10.1152/ajpendo.1994.267.2.E323. [DOI] [PubMed] [Google Scholar]
- Smith W. L. The eicosanoids and their biochemical mechanisms of action. Biochem J. 1989 Apr 15;259(2):315–324. doi: 10.1042/bj2590315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Street I. P., Lin H. K., Laliberté F., Ghomashchi F., Wang Z., Perrier H., Tremblay N. M., Huang Z., Weech P. K., Gelb M. H. Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry. 1993 Jun 15;32(23):5935–5940. doi: 10.1021/bi00074a003. [DOI] [PubMed] [Google Scholar]
- Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
- Wang Y., Simonson M. S., Pouysségur J., Dunn M. J. Endothelin rapidly stimulates mitogen-activated protein kinase activity in rat mesangial cells. Biochem J. 1992 Oct 15;287(Pt 2):589–594. doi: 10.1042/bj2870589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterman W. H., Sha'afi R. I. A mitogen-activated protein kinase independent pathway involved in the phosphorylation and activation of cytosolic phospholipase A2 in human neutrophils stimulated with tumor necrosis factor-alpha. Biochem Biophys Res Commun. 1995 Apr 6;209(1):271–278. doi: 10.1006/bbrc.1995.1499. [DOI] [PubMed] [Google Scholar]
- Wijkander J., Sundler R. An 100-kDa arachidonate-mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Purification, substrate interaction and phosphorylation by protein kinase C. Eur J Biochem. 1991 Dec 18;202(3):873–880. doi: 10.1111/j.1432-1033.1991.tb16445.x. [DOI] [PubMed] [Google Scholar]
- Wilkinson S. E., Parker P. J., Nixon J. S. Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J. 1993 Sep 1;294(Pt 2):335–337. doi: 10.1042/bj2940335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winitz S., Gupta S. K., Qian N. X., Heasley L. E., Nemenoff R. A., Johnson G. L. Expression of a mutant Gi2 alpha subunit inhibits ATP and thrombin stimulation of cytoplasmic phospholipase A2-mediated arachidonic acid release independent of Ca2+ and mitogen-activated protein kinase regulation. J Biol Chem. 1994 Jan 21;269(3):1889–1895. [PubMed] [Google Scholar]
- Xing M., Insel P. A. Protein kinase C-dependent activation of cytosolic phospholipase A2 and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest. 1996 Mar 1;97(5):1302–1310. doi: 10.1172/JCI118546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xing M., Wilkins P. L., McConnell B. K., Mattera R. Regulation of phospholipase A2 activity in undifferentiated and neutrophil-like HL60 cells. Linkage between impaired responses to agonists and absence of protein kinase C-dependent phosphorylation of cytosolic phospholipase A2. J Biol Chem. 1994 Jan 28;269(4):3117–3124. [PubMed] [Google Scholar]
- Xu X. X., Rock C. O., Qiu Z. H., Leslie C. C., Jackowski S. Regulation of cytosolic phospholipase A2 phosphorylation and eicosanoid production by colony-stimulating factor 1. J Biol Chem. 1994 Dec 16;269(50):31693–31700. [PubMed] [Google Scholar]
- de Carvalho M. G., McCormack A. L., Olson E., Ghomashchi F., Gelb M. H., Yates J. R., 3rd, Leslie C. C. Identification of phosphorylation sites of human 85-kDa cytosolic phospholipase A2 expressed in insect cells and present in human monocytes. J Biol Chem. 1996 Mar 22;271(12):6987–6997. doi: 10.1074/jbc.271.12.6987. [DOI] [PubMed] [Google Scholar]
- de Vries-Smits A. M., Burgering B. M., Leevers S. J., Marshall C. J., Bos J. L. Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature. 1992 Jun 18;357(6379):602–604. doi: 10.1038/357602a0. [DOI] [PubMed] [Google Scholar]