Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 1;99(5):855–860. doi: 10.1172/JCI119249

Angiotensin-independent mechanism for aldosterone synthesis during chronic extracellular fluid volume depletion.

S Okubo 1, F Niimura 1, H Nishimura 1, F Takemoto 1, A Fogo 1, T Matsusaka 1, I Ichikawa 1
PMCID: PMC507892  PMID: 9062342

Abstract

Wild-type (Agt+/+) and homozygous angiotensinogen deletion mutant (Agt-/-) littermates were placed on normal (NS) or low Na diet (LS) for 2 weeks. Plasma aldosterone levels (P(aldo)) were comparable during NS, and similarly elevated during LS in Agt+/+ and Agt-/-. Moreover, in both, the elevation in P(aldo) was accompanied by marked increase in adrenal zona glomerulosa cells and adrenal P450aldo mRNA. Agt-/- mice were distinguished from Agt+/+ mice by their higher plasma K level, by approximately 1.5 and approximately 3.8 mEq/liter during NS and LS, respectively. Within the Agt-/- group, P(aldo) was directly proportional to plasma K. The importance of K for the hyperaldosteronism during dietary Na restriction was verified by the observation that superimposition of K restriction led to hypotension in Agt+/+ and uniform death in Agt-/- mice along with a reduction in P(aldo) by 75 and 90%, respectively. Thus, suppression of potassium, but not angiotensin, led to a marked attenuation of hyperaldosteronism during dietary Na restriction. Therefore, (a) a powerful angiotensin-independent mechanism exists for the hyperaldosteronism during LS; (b) high K is a central component of this mechanism; (c) contrary to current belief, the tonic effect of high K on aldosterone synthesis and release does not require an intact renin-angiotensin system; and (d) normally, intermediary feedback signals for hyperaldosteronism, i.e., both hypotension and high K, are effectively masked by aldosterone actions.

Full Text

The Full Text of this article is available as a PDF (364.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera G., Catt K. J. Regulation of aldosterone secretion by the renin-angiotensin system during sodium restriction in rats. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4057–4061. doi: 10.1073/pnas.75.8.4057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aguilera G. Factors controlling steroid biosynthesis in the zona glomerulosa of the adrenal. J Steroid Biochem Mol Biol. 1993 Apr;45(1-3):147–151. doi: 10.1016/0960-0760(93)90134-i. [DOI] [PubMed] [Google Scholar]
  3. Aguilera G., Hauger R. L., Catt K. J. Control of aldosterone secretion during sodium restriction: adrenal receptor regulation and increased adrenal sensitivity to angiotensin II. Proc Natl Acad Sci U S A. 1978 Feb;75(2):975–979. doi: 10.1073/pnas.75.2.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blair-West J. R., Cain M. D., Catt K. J., Coghlan J. P., Denton D. A., Funder J. W., Scoggins B. A., Wright R. D. The dissociation of aldosterone secretion and systemic renin and angiotensin II levels during the correction of sodium deficiency. Acta Endocrinol (Copenh) 1971 Feb;66(2):229–247. doi: 10.1530/acta.0.0660229. [DOI] [PubMed] [Google Scholar]
  5. Boyd J. E., Palmore W. P., Mulrow P. J. Role of potassium in the control of aldosterone secretion in the rat. Endocrinology. 1971 Mar;88(3):556–565. doi: 10.1210/endo-88-3-556. [DOI] [PubMed] [Google Scholar]
  6. Bradshaw B., Moore T. J. Abnormal regulation of adrenal angiotensin II receptors in spontaneously hypertensive rats. Hypertension. 1988 Jan;11(1):49–54. doi: 10.1161/01.hyp.11.1.49. [DOI] [PubMed] [Google Scholar]
  7. Braley L. M., Menachery A. I., Brown E. M., Williams G. H. Comparative effect of angiotensin II, potassium, adrenocorticotropin, and cyclic adenosine 3',5'-monophosphate on cytosolic calcium in rat adrenal cells. Endocrinology. 1986 Sep;119(3):1010–1019. doi: 10.1210/endo-119-3-1010. [DOI] [PubMed] [Google Scholar]
  8. Cano A., Miller R. T., Alpern R. J., Preisig P. A. Angiotensin II stimulation of Na-H antiporter activity is cAMP independent in OKP cells. Am J Physiol. 1994 Jun;266(6 Pt 1):C1603–C1608. doi: 10.1152/ajpcell.1994.266.6.C1603. [DOI] [PubMed] [Google Scholar]
  9. Doi Y., Atarashi K., Franco-Saenz R., Mulrow P. J. Effect of changes in sodium or potassium balance, and nephrectomy, on adrenal renin and aldosterone concentrations. Hypertension. 1984 Mar-Apr;6(2 Pt 2):I124–I129. doi: 10.1161/01.hyp.6.2_pt_2.i124. [DOI] [PubMed] [Google Scholar]
  10. JOHNSON B. B., LIEBERMAN A. H., MULROW P. J. Aldosterone excretion in normal subjects depleted of sodium and potassium. J Clin Invest. 1957 Jun;36(6 Pt 1):757–766. doi: 10.1172/JCI103480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Khuri R. N., Strieder W. N., Giebisch G. Effects of flow rate and potassium intake on distal tubular potassium transfer. Am J Physiol. 1975 Apr;228(4):1249–1261. doi: 10.1152/ajplegacy.1975.228.4.1249. [DOI] [PubMed] [Google Scholar]
  12. Kifor I., Moore T. J., Fallo F., Sperling E., Menachery A., Chiou C. Y., Williams G. H. The effect of sodium intake on angiotensin content of the rat adrenal gland. Endocrinology. 1991 Mar;128(3):1277–1284. doi: 10.1210/endo-128-3-1277. [DOI] [PubMed] [Google Scholar]
  13. Kim H. S., Krege J. H., Kluckman K. D., Hagaman J. R., Hodgin J. B., Best C. F., Jennette J. C., Coffman T. M., Maeda N., Smithies O. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2735–2739. doi: 10.1073/pnas.92.7.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LARAGH J. H., STOERK H. C. A study of the mechanism of secretion of the sodium-retaining hormone (aldosterone). J Clin Invest. 1957 Mar;36(3):383–392. doi: 10.1172/JCI103434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mendelsohn F. A., Johnston C. I., Doyle A. E., Scoggins B. A., Denton D. A., Coghlan J. P. Renin, angiotensin II, and adrenal corticosteroid relationships during sodium deprivation and angiotensin infusion in normotensive and hypertensive man. Circ Res. 1972 Nov;31(5):728–739. doi: 10.1161/01.res.31.5.728. [DOI] [PubMed] [Google Scholar]
  16. Nakamaru M., Misono K. S., Naruse M., Workman R. J., Inagami T. A role for the adrenal renin-angiotensin system in the regulation of potassium-stimulated aldosterone production. Endocrinology. 1985 Nov;117(5):1772–1778. doi: 10.1210/endo-117-5-1772. [DOI] [PubMed] [Google Scholar]
  17. Niimura F., Labosky P. A., Kakuchi J., Okubo S., Yoshida H., Oikawa T., Ichiki T., Naftilan A. J., Fogo A., Inagami T. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest. 1995 Dec;96(6):2947–2954. doi: 10.1172/JCI118366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Noth R. H., Tan S. Y., Mulrow P. J. Effects of angiotensin II blockade by saralasin in normal man. J Clin Endocrinol Metab. 1977 Jul;45(1):10–15. doi: 10.1210/jcem-45-1-10. [DOI] [PubMed] [Google Scholar]
  19. Oelkers W., Brown J. J., Fraser R., Lever A. F., Morton J. J., Robertson J. I. Sensitization of the adrenal cortex to angiotensin II in sodium-deplete man. Circ Res. 1974 Jan;34(1):69–77. doi: 10.1161/01.res.40.4.69. [DOI] [PubMed] [Google Scholar]
  20. Palmore W. P., Marieb N. J., Mulrow P. J. Stimulation of aldosterone secretion by sodium depletion in nephrectomized rats. Endocrinology. 1969 Jun;84(6):1342–1351. doi: 10.1210/endo-84-6-1342. [DOI] [PubMed] [Google Scholar]
  21. Schor N., Ichikawa I., Brenner B. M. Glomerular adaptations to chronic dietary salt restriction or excess. Am J Physiol. 1980 May;238(5):F428–F436. doi: 10.1152/ajprenal.1980.238.5.F428. [DOI] [PubMed] [Google Scholar]
  22. Skøtt O., Briggs J. P. Direct demonstration of macula densa-mediated renin secretion. Science. 1987 Sep 25;237(4822):1618–1620. doi: 10.1126/science.3306925. [DOI] [PubMed] [Google Scholar]
  23. Steiner R. W., Tucker B. J., Blantz R. C. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin. J Clin Invest. 1979 Aug;64(2):503–512. doi: 10.1172/JCI109488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Swartz S. L., Williams G. H., Hollenberg N. K., Dluhy R. G., Moore T. J. Primacy of the renin-angiotensin system in mediating the aldosterone response to sodium restriction. J Clin Endocrinol Metab. 1980 Jun;50(6):1071–1074. doi: 10.1210/jcem-50-6-1071. [DOI] [PubMed] [Google Scholar]
  25. Tanimoto K., Sugiyama F., Goto Y., Ishida J., Takimoto E., Yagami K., Fukamizu A., Murakami K. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994 Dec 16;269(50):31334–31337. [PubMed] [Google Scholar]
  26. Tian Y., Balla T., Baukal A. J., Catt K. J. Growth responses to angiotensin II in bovine adrenal glomerulosa cells. Am J Physiol. 1995 Jan;268(1 Pt 1):E135–E144. doi: 10.1152/ajpendo.1995.268.1.E135. [DOI] [PubMed] [Google Scholar]
  27. Tremblay A., Lehoux J. G. Influence of captopril on adrenal cytochrome P-450s and adrenodoxin expression in high potassium or low sodium intake. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):799–808. doi: 10.1016/0960-0760(92)90428-l. [DOI] [PubMed] [Google Scholar]
  28. Tremblay A., Parker K. L., Lehoux J. G. Dietary potassium supplementation and sodium restriction stimulate aldosterone synthase but not 11 beta-hydroxylase P-450 messenger ribonucleic acid accumulation in rat adrenals and require angiotensin II production. Endocrinology. 1992 Jun;130(6):3152–3158. doi: 10.1210/endo.130.6.1597135. [DOI] [PubMed] [Google Scholar]
  29. Young D. B. Analysis of long-term potassium regulation. Endocr Rev. 1985 Winter;6(1):24–44. doi: 10.1210/edrv-6-1-24. [DOI] [PubMed] [Google Scholar]
  30. Young D. B., Smith M. J., Jr, Jackson T. E., Scott R. E. Multiplicative interaction between angiotensin II and K concentration in stimulation of aldosterone. Am J Physiol. 1984 Sep;247(3 Pt 1):E328–E335. doi: 10.1152/ajpendo.1984.247.3.E328. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES