Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 1;99(5):888–893. doi: 10.1172/JCI119253

In vivo action of 15-lipoxygenase in early stages of human atherogenesis.

H Kühn 1, D Heydeck 1, I Hugou 1, C Gniwotta 1
PMCID: PMC507896  PMID: 9062346

Abstract

Oxidative modification of low density lipoprotein has been suggested as patho-physiologically relevant process in atherogenesis and the lipid peroxidizing enzyme 15-lipoxygenase may be involved. For experimental evidence on the in vivo action of this enzyme in the time course of plaque formation we analyzed the lipid extracts of lesional areas representing various stages of human atherogenesis for the occurrence of specific 15-lipoxygenase products. In advanced human lesions the degree of oxygenation of the lesion lipids measured as hydroxy linoleic acid/linoleic acid ratio varied between 0.2 and 3.2%. Here an unspecific pattern of oxygenated lipids that did not differ from the pattern formed during copper-catalyzed LDL oxidation was detected. In both cases an enantiomer ratio (S/R-ratio) of 13-hydroxy-9Z,11E-octadecadienoic acid (13-HODE) of approximately 1:1 was found. In young human lesions which were obtained from the collection of the pathological determinants of atherosclerosis in youth (PDAY) program the hydroxy linoleic acid/linoleic acid ratio was much smaller (variation between 0.05 and 0.6%), and a significant share of specific 15-lipoxygenase products was detected (S/R-ratio of 13-hydroxy linoleic acid of 54 +/- 3.1/46 +/- 3.1 [mean +/- SD]). These data suggest that the 15-lipoxygenase is enzymatically active on endogenous substrates in young human lesions and thus, may be of patho-physiological importance for early atherogenesis. In advanced human plaques the 15-lipoxygenase may be functionally silent and specific lipoxygenase products formed in earlier stages may be decomposed or superimposed by large amounts of nonenzymatic lipid peroxidation products.

Full Text

The Full Text of this article is available as a PDF (148.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amanuma K., Kanaseki T., Ikeuchi Y., Ohkuma S., Takano T. Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerotic aorta of WHHL rabbits. Virchows Arch A Pathol Anat Histopathol. 1986;410(3):231–238. doi: 10.1007/BF00710829. [DOI] [PubMed] [Google Scholar]
  2. Aqel N. M., Ball R. Y., Waldmann H., Mitchinson M. J. Monocytic origin of foam cells in human atherosclerotic plaques. Atherosclerosis. 1984 Dec;53(3):265–271. doi: 10.1016/0021-9150(84)90127-8. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Belkner J., Wiesner R., Rathman J., Barnett J., Sigal E., Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993 Apr 1;213(1):251–261. doi: 10.1111/j.1432-1033.1993.tb17755.x. [DOI] [PubMed] [Google Scholar]
  5. Benz D. J., Mol M., Ezaki M., Mori-Ito N., Zelán I., Miyanohara A., Friedmann T., Parthasarathy S., Steinberg D., Witztum J. L. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J Biol Chem. 1995 Mar 10;270(10):5191–5197. doi: 10.1074/jbc.270.10.5191. [DOI] [PubMed] [Google Scholar]
  6. Cathcart M. K., McNally A. K., Chisolm G. M. Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex. J Lipid Res. 1991 Jan;32(1):63–70. [PubMed] [Google Scholar]
  7. Conrad D. J., Kuhn H., Mulkins M., Highland E., Sigal E. Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):217–221. doi: 10.1073/pnas.89.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esterbauer H., Ramos P. Chemistry and pathophysiology of oxidation of LDL. Rev Physiol Biochem Pharmacol. 1996;127:31–64. doi: 10.1007/BFb0048264. [DOI] [PubMed] [Google Scholar]
  9. Folcik V. A., Nivar-Aristy R. A., Krajewski L. P., Cathcart M. K. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995 Jul;96(1):504–510. doi: 10.1172/JCI118062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harland W. A., Gilbert J. D., Brooks C. J. Lipids of human atheroma. 8. Oxidised derivatives of cholesteryl linoleate. Biochim Biophys Acta. 1973 Sep 25;316(3):378–385. [PubMed] [Google Scholar]
  11. Harland W. A., Gilbert J. D., Steel G., Brooks C. J. Lipids of human atheroma. 5. The occurrence of a new group of polar sterol esters in various stages of human atherosclerosis. Atherosclerosis. 1971 Mar-Apr;13(2):239–246. doi: 10.1016/0021-9150(71)90026-8. [DOI] [PubMed] [Google Scholar]
  12. Holvoet P., Collen D. Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J. 1994 Dec;8(15):1279–1284. doi: 10.1096/fasebj.8.15.8001740. [DOI] [PubMed] [Google Scholar]
  13. Hugou I., Blin P., Henri J., Daret D., Larrue J. 15-Lipoxygenase expression in smooth muscle cells from atherosclerotic rabbit aortas. Atherosclerosis. 1995 Mar;113(2):189–195. doi: 10.1016/0021-9150(94)05446-p. [DOI] [PubMed] [Google Scholar]
  14. Kühn H., Belkner J., Wiesner R., Schewe T., Lankin V. Z., Tikhaze A. K. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids. 1992;5(1):17–22. [PubMed] [Google Scholar]
  15. Kühn H., Belkner J., Zaiss S., Fährenklemper T., Wohlfeil S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med. 1994 Jun 1;179(6):1903–1911. doi: 10.1084/jem.179.6.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kühn H. Biosynthesis, metabolization and biological importance of the primary 15-lipoxygenase metabolites 15-hydro(pero)XY-5Z,8Z,11Z,13E-eicosatetraenoic acid and 13-hydro(pero)XY-9Z,11E-octadecadienoic acid. Prog Lipid Res. 1996 Sep;35(3):203–226. doi: 10.1016/s0163-7827(96)00008-2. [DOI] [PubMed] [Google Scholar]
  17. Lass A., Belkner J., Esterbauer H., Kühn H. Lipoxygenase treatment render low-density lipoprotein susceptible to Cu2+-catalysed oxidation. Biochem J. 1996 Mar 1;314(Pt 2):577–585. doi: 10.1042/bj3140577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rao S. I., Wilks A., Hamberg M., Ortiz de Montellano P. R. The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical. J Biol Chem. 1994 Mar 11;269(10):7210–7216. [PubMed] [Google Scholar]
  19. Redgrave T. G., Roberts D. C., West C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975 May 12;65(1-2):42–49. doi: 10.1016/0003-2697(75)90488-1. [DOI] [PubMed] [Google Scholar]
  20. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  21. Schnurr K., Belkner J., Ursini F., Schewe T., Kühn H. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem. 1996 Mar 1;271(9):4653–4658. doi: 10.1074/jbc.271.9.4653. [DOI] [PubMed] [Google Scholar]
  22. Shen J., Herderick E., Cornhill J. F., Zsigmond E., Kim H. S., Kühn H., Guevara N. V., Chan L. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest. 1996 Nov 15;98(10):2201–2208. doi: 10.1172/JCI119029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shen J., Kühn H., Petho-Schramm A., Chan L. Transgenic rabbits with the integrated human 15-lipoxygenase gene driven by a lysozyme promoter: macrophage-specific expression and variable positional specificity of the transgenic enzyme. FASEB J. 1995 Dec;9(15):1623–1631. doi: 10.1096/fasebj.9.15.8529842. [DOI] [PubMed] [Google Scholar]
  24. Simon T. C., Makheja A. N., Bailey J. M. The induced lipoxygenase in atherosclerotic aorta converts linoleic acid to the platelet chemorepellant factor 13-HODE. Thromb Res. 1989 Jul 15;55(2):171–178. doi: 10.1016/0049-3848(89)90433-7. [DOI] [PubMed] [Google Scholar]
  25. Sparrow C. P., Parthasarathy S., Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988 Jun;29(6):745–753. [PubMed] [Google Scholar]
  26. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  27. Steinberg D., Witztum J. L. Lipoproteins and atherogenesis. Current concepts. JAMA. 1990 Dec 19;264(23):3047–3052. [PubMed] [Google Scholar]
  28. Takano T., Mineo C. Atherosclerosis and molecular pathology: mechanisms of cholesteryl ester accumulation in foam cells and extracellular space of atherosclerotic lesions. J Pharmacobiodyn. 1990 Jul;13(7):385–413. doi: 10.1248/bpb1978.13.385. [DOI] [PubMed] [Google Scholar]
  29. Wissler R. W. New insights into the pathogenesis of atherosclerosis as revealed by PDAY. Pathobiological Determinants of Atherosclerosis in Youth. Atherosclerosis. 1994 Aug;108 (Suppl):S3–20. doi: 10.1016/0021-9150(94)90149-x. [DOI] [PubMed] [Google Scholar]
  30. Ylä-Herttuala S., Luoma J., Viita H., Hiltunen T., Sisto T., Nikkari T. Transfer of 15-lipoxygenase gene into rabbit iliac arteries results in the appearance of oxidation-specific lipid-protein adducts characteristic of oxidized low density lipoprotein. J Clin Invest. 1995 Jun;95(6):2692–2698. doi: 10.1172/JCI117971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Glass C. K., Sigal E., Witztum J. L., Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6959–6963. doi: 10.1073/pnas.87.18.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES