Abstract
Familial combined hyperlipidemia (FCH) is a common genetic lipid disorder in Western societies. In a recent report (Dallinga-Thie, G.M., X.D. Bu, M. van Linde-Sibenius Trip, J.I. Rotter, A.J. Lusis, and T.W.A. de Bruin. J. Lipid Res., 1996, 36:136-147) we have studied three restriction enzyme polymorphisms: XmnI, and MspI sites 5' of the apo AI gene and SstI site in the 3' untranslated region of exon 4 of the apo CIII gene in 18 FCH pedigrees, including 18 probands, 178 hyperlipidemic relatives, 210 normolipidemic relatives, and 176 spouses. DNA variations in the apo AI-CIII-AIV gene cluster had a modifying effect on plasma triglycerides, LDL cholesterol, and apolipoprotein CIII levels. In this study, combinations of haplotypes were analyzed to further characterize their interactions and effect on the expression of severe hyperlipidemia in FCH subjects. A specific combination of haplotypes with one chromosome carrying the X1M1S2 (1-1-2) haplotype and the other the X2M2S1 haplotype (2-2-1) was significantly more frequent in hyperlipidemic relatives (6%) than in normolipidemic relatives (3%) and spouses (0.5%). Associated with this combination of haplotypes were significantly elevated plasma cholesterol (P < 0.0001), triglycerides (P < 0.0001), and apo CIII (P < 0.001) levels when compared to the wild type combination of haplotypes 1-1-1/1-1-1. The only spouse with this specific combination of haplotypes showed a severe hyperlipidemic phenotype, similar to FCH. Furthermore, nonparametric sibpair linkage analysis revealed significant linkage between these markers in the gene cluster and the FCH phenotype (MspI P = 0.0088, SstI P = 0.044, and XMS haplotype P = 0.037). The present findings confirm that the apo AI-CIII-IV gene cluster contributes to the FCH phenotype, but this contribution is genetically complex. An epistatic interaction between different haplotypes of the gene cluster was demonstrated. The S2 allele on one haplotype was synergistic to the X2M2 allele on the other haplotype in its hyperlipidemic effect. Therefore, two different susceptibility loci exist in the gene cluster, demonstrating the paradigm of complex genetic contribution to FCH.
Full Text
The Full Text of this article is available as a PDF (186.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austin M. A., Brunzell J. D., Fitch W. L., Krauss R. M. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis. 1990 Jul-Aug;10(4):520–530. doi: 10.1161/01.atv.10.4.520. [DOI] [PubMed] [Google Scholar]
- Babirak S. P., Brown B. G., Brunzell J. D. Familial combined hyperlipidemia and abnormal lipoprotein lipase. Arterioscler Thromb. 1992 Oct;12(10):1176–1183. doi: 10.1161/01.atv.12.10.1176. [DOI] [PubMed] [Google Scholar]
- Bredie S. J., Kiemeney L. A., de Haan A. F., Demacker P. N., Stalenhoef A. F. Inherited susceptibility determines the distribution of dense low-density lipoprotein subfraction profiles in familial combined hyperlipidemia. Am J Hum Genet. 1996 Apr;58(4):812–822. [PMC free article] [PubMed] [Google Scholar]
- Brunzell J. D., Albers J. J., Chait A., Grundy S. M., Groszek E., McDonald G. B. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983 Feb;24(2):147–155. [PubMed] [Google Scholar]
- Castro Cabezas M., de Bruin T. W., Erkelens D. W. Familial combined hyperlipidaemia: 1973-1991. Neth J Med. 1992 Feb;40(1-2):83–95. [PubMed] [Google Scholar]
- Castro Cabezas M., de Bruin T. W., de Valk H. W., Shoulders C. C., Jansen H., Willem Erkelens D. Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J Clin Invest. 1993 Jul;92(1):160–168. doi: 10.1172/JCI116544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coresh J., Beaty T. H., Kwiterovich P. O., Jr, Antonarakis S. E. Pedigree and sib-pair linkage analysis suggest the apolipoprotein B gene is not the major gene influencing plasma apolipoprotein B levels. Am J Hum Genet. 1992 May;50(5):1038–1045. [PMC free article] [PubMed] [Google Scholar]
- Cortner J. A., Coates P. M., Bennett M. J., Cryer D. R., Le N. A. Familial combined hyperlipidaemia: use of stable isotopes to demonstrate overproduction of very low-density lipoprotein apolipoprotein B by the liver. J Inherit Metab Dis. 1991;14(6):915–922. doi: 10.1007/BF01800473. [DOI] [PubMed] [Google Scholar]
- Cullen P., Farren B., Scott J., Farrall M. Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. Arterioscler Thromb. 1994 Aug;14(8):1233–1249. doi: 10.1161/01.atv.14.8.1233. [DOI] [PubMed] [Google Scholar]
- Dallinga-Thie G. M., Bu X. D., van Linde-Sibenius Trip M., Rotter J. I., Lusis A. J., de Bruin T. W. Apolipoprotein A-I/C-III/A-IV gene cluster in familial combined hyperlipidemia: effects on LDL-cholesterol and apolipoproteins B and C-III. J Lipid Res. 1996 Jan;37(1):136–147. [PubMed] [Google Scholar]
- Dammerman M., Sandkuijl L. A., Halaas J. L., Chung W., Breslow J. L. An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3' untranslated region polymorphisms. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4562–4566. doi: 10.1073/pnas.90.10.4562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gagné E., Genest J., Jr, Zhang H., Clarke L. A., Hayden M. R. Analysis of DNA changes in the LPL gene in patients with familial combined hyperlipidemia. Arterioscler Thromb. 1994 Aug;14(8):1250–1257. doi: 10.1161/01.atv.14.8.1250. [DOI] [PubMed] [Google Scholar]
- Galton D. J. Molecular genetics of coronary heart disease. Eur J Clin Invest. 1988 Jun;18(3):219–225. doi: 10.1111/j.1365-2362.1988.tb01249.x. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Schrott H. G., Hazzard W. R., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973 Jul;52(7):1544–1568. doi: 10.1172/JCI107332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haseman J. K., Elston R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972 Mar;2(1):3–19. doi: 10.1007/BF01066731. [DOI] [PubMed] [Google Scholar]
- Hayden M. R., Kirk H., Clark C., Frohlich J., Rabkin S., McLeod R., Hewitt J. DNA polymorphisms in and around the Apo-A1-CIII genes and genetic hyperlipidemias. Am J Hum Genet. 1987 May;40(5):421–430. [PMC free article] [PubMed] [Google Scholar]
- Heliö T., Palotie A., Sane T., Tikkanen M. J., Kontula K. No evidence for linkage between familial hypertriglyceridemia and apolipoprotein B, apolipoprotein C-III or lipoprotein lipase genes. Hum Genet. 1994 Sep;94(3):271–278. doi: 10.1007/BF00208282. [DOI] [PubMed] [Google Scholar]
- Hoffer M. J., Bredie S. J., Boomsma D. I., Reymer P. W., Kastelein J. J., de Knijff P., Demacker P. N., Stalenhoef A. F., Havekes L. M., Frants R. R. The lipoprotein lipase (Asn291-->Ser) mutation is associated with elevated lipid levels in families with familial combined hyperlipidaemia. Atherosclerosis. 1996 Jan 26;119(2):159–167. doi: 10.1016/0021-9150(95)05641-6. [DOI] [PubMed] [Google Scholar]
- Iselius L. Complex segregation analysis of hypertriglyceridemia. Hum Hered. 1981;31(4):222–226. doi: 10.1159/000153212. [DOI] [PubMed] [Google Scholar]
- Jarvik G. P., Brunzell J. D., Austin M. A., Krauss R. M., Motulsky A. G., Wijsman E. Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler Thromb. 1994 Nov;14(11):1687–1694. doi: 10.1161/01.atv.14.11.1687. [DOI] [PubMed] [Google Scholar]
- Jeenah M., Kessling A., Miller N., Humphries S. G to A substitution in the promoter region of the apolipoprotein AI gene is associated with elevated serum apolipoprotein AI and high density lipoprotein cholesterol concentrations. Mol Biol Med. 1990 Jun;7(3):233–241. [PubMed] [Google Scholar]
- Kissebah A. H., Alfarsi S., Adams P. W. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metabolism. 1981 Sep;30(9):856–868. doi: 10.1016/0026-0495(81)90064-0. [DOI] [PubMed] [Google Scholar]
- Li W. W., Dammerman M. M., Smith J. D., Metzger S., Breslow J. L., Leff T. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest. 1995 Dec;96(6):2601–2605. doi: 10.1172/JCI118324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mailly F., Tugrul Y., Reymer P. W., Bruin T., Seed M., Groenemeyer B. F., Asplund-Carlson A., Vallance D., Winder A. F., Miller G. J. A common variant in the gene for lipoprotein lipase (Asp9-->Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol. 1995 Apr;15(4):468–478. doi: 10.1161/01.atv.15.4.468. [DOI] [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nevin D. N., Brunzell J. D., Deeb S. S. The LPL gene in individuals with familial combined hyperlipidemia and decreased LPL activity. Arterioscler Thromb. 1994 Jun;14(6):869–873. doi: 10.1161/01.atv.14.6.869. [DOI] [PubMed] [Google Scholar]
- Ordovas J. M., Civeira F., Genest J., Jr, Craig S., Robbins A. H., Meade T., Pocovi M., Frossard P. M., Masharani U., Wilson P. W. Restriction fragment length polymorphisms of the apolipoprotein A-I, C-III, A-IV gene locus. Relationships with lipids, apolipoproteins, and premature coronary artery disease. Atherosclerosis. 1991 Mar;87(1):75–86. doi: 10.1016/0021-9150(91)90234-t. [DOI] [PubMed] [Google Scholar]
- Pagani F., Sidoli A., Giudici G. A., Barenghi L., Vergani C., Baralle F. E. Human apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res. 1990 Aug;31(8):1371–1377. [PubMed] [Google Scholar]
- Paul-Hayase H., Rosseneu M., Robinson D., Van Bervliet J. P., Deslypere J. P., Humphries S. E. Polymorphisms in the apolipoprotein (apo) AI-CIII-AIV gene cluster: detection of genetic variation determining plasma apo AI, apo CIII and apo AIV concentrations. Hum Genet. 1992 Feb;88(4):439–446. doi: 10.1007/BF00215679. [DOI] [PubMed] [Google Scholar]
- Paulweber B., Friedl W., Krempler F., Humphries S. E., Sandhofer F. Genetic variation in the apolipoprotein AI-CIII-AIV gene cluster and coronary heart disease. Atherosclerosis. 1988 Oct;73(2-3):125–133. doi: 10.1016/0021-9150(88)90033-0. [DOI] [PubMed] [Google Scholar]
- Rauh G., Schuster H., Müller B., Schewe S., Keller C., Wolfram G., Zöllner N. Genetic evidence from 7 families that the apolipoprotein B gene is not involved in familial combined hyperlipidemia. Atherosclerosis. 1990 Jul;83(1):81–87. doi: 10.1016/0021-9150(90)90133-4. [DOI] [PubMed] [Google Scholar]
- Rees A., Stocks J., Williams L. G., Caplin J. L., Jowett N. I., Camm A. J., Galton D. J. DNA polymorphisms in the apolipoprotein C-III and insulin genes and atherosclerosis. Atherosclerosis. 1985 Dec;58(1-3):269–275. doi: 10.1016/0021-9150(85)90072-3. [DOI] [PubMed] [Google Scholar]
- Reymer P. W., Groenemeyer B. E., Gagné E., Miao L., Appelman E. E., Seidel J. C., Kromhout D., Bijvoet S. M., van de Oever K., Bruin T. A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia. Hum Mol Genet. 1995 Sep;4(9):1543–1549. doi: 10.1093/hmg/4.9.1543. [DOI] [PubMed] [Google Scholar]
- Rotter J. I., Anderson C. E., Rubin R., Congleton J. E., Terasaki P. I., Rimoin D. L. HLA genotypic study of insulin-dependent diabetes the excess of DR3/DR4 heterozygotes allows rejection of the recessive hypothesis. Diabetes. 1983 Feb;32(2):169–174. doi: 10.2337/diab.32.2.169. [DOI] [PubMed] [Google Scholar]
- Rotter J. I., Bu X., Cantor R. M., Warden C. H., Brown J., Gray R. J., Blanche P. J., Krauss R. M., Lusis A. J. Multilocus genetic determinants of LDL particle size in coronary artery disease families. Am J Hum Genet. 1996 Mar;58(3):585–594. [PMC free article] [PubMed] [Google Scholar]
- Shoulders C. C., Grantham T. T., North J. D., Gaspardone A., Tomai F., de Fazio A., Versaci F., Gioffre P. A., Cox N. J. Hypertriglyceridemia and the apolipoprotein CIII gene locus: lack of association with the variant insulin response element in Italian school children. Hum Genet. 1996 Nov;98(5):557–566. doi: 10.1007/s004390050259. [DOI] [PubMed] [Google Scholar]
- Shoulders C. C., Harry P. J., Lagrost L., White S. E., Shah N. F., North J. D., Gilligan M., Gambert P., Ball M. J. Variation at the apo AI/CIII/AIV gene complex is associated with elevated plasma levels of apo CIII. Atherosclerosis. 1991 Apr;87(2-3):239–247. doi: 10.1016/0021-9150(91)90026-y. [DOI] [PubMed] [Google Scholar]
- Surguchov A. P., Page G. P., Smith L., Patsch W., Boerwinkle E. Polymorphic markers in apolipoprotein C-III gene flanking regions and hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 1996 Aug;16(8):941–947. doi: 10.1161/01.atv.16.8.941. [DOI] [PubMed] [Google Scholar]
- Talmud P. J., Ye S., Humphries S. E. Polymorphism in the promoter region of the apolipoprotein AI gene associated with differences in apolipoprotein AI levels: the European Atherosclerosis Research Study. Genet Epidemiol. 1994;11(3):265–280. doi: 10.1002/gepi.1370110305. [DOI] [PubMed] [Google Scholar]
- Thomson G., Robinson W. P., Kuhner M. K., Joe S., MacDonald M. J., Gottschall J. L., Barbosa J., Rich S. S., Bertrams J., Baur M. P. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet. 1988 Dec;43(6):799–816. [PMC free article] [PubMed] [Google Scholar]
- Tybjaerg-Hansen A., Nordestgaard B. G., Gerdes L. U., Faergeman O., Humphries S. E. Genetic markers in the apo AI-CIII-AIV gene cluster for combined hyperlipidemia, hypertriglyceridemia, and predisposition to atherosclerosis. Atherosclerosis. 1993 May;100(2):157–169. doi: 10.1016/0021-9150(93)90202-6. [DOI] [PubMed] [Google Scholar]
- Venkatesan S., Cullen P., Pacy P., Halliday D., Scott J. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb. 1993 Jul;13(7):1110–1118. doi: 10.1161/01.atv.13.7.1110. [DOI] [PubMed] [Google Scholar]
- Williams W. R., Lalouel J. M. Complex segregation analysis of hyperlipidemia in a Seattle sample. Hum Hered. 1982;32(1):24–36. doi: 10.1159/000153254. [DOI] [PubMed] [Google Scholar]
- Wojciechowski A. P., Farrall M., Cullen P., Wilson T. M., Bayliss J. D., Farren B., Griffin B. A., Caslake M. J., Packard C. J., Shepherd J. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature. 1991 Jan 10;349(6305):161–164. doi: 10.1038/349161a0. [DOI] [PubMed] [Google Scholar]
- Wu D. A., Bu X., Warden C. H., Shen D. D., Jeng C. Y., Sheu W. H., Fuh M. M., Katsuya T., Dzau V. J., Reaven G. M. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J Clin Invest. 1996 May 1;97(9):2111–2118. doi: 10.1172/JCI118648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu C. F., Talmud P., Schuster H., Houlston R., Miller G., Humphries S. Association between genetic variation at the APO AI-CIII-AIV gene cluster and familial combined hyperlipidaemia. Clin Genet. 1994 Dec;46(6):385–397. doi: 10.1111/j.1399-0004.1994.tb04404.x. [DOI] [PubMed] [Google Scholar]