Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 1;99(5):962–966. doi: 10.1172/JCI119261

Neonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events.

V K Patchev 1, A Montkowski 1, D Rouskova 1, L Koranyi 1, F Holsboer 1, O F Almeida 1
PMCID: PMC507904  PMID: 9062354

Abstract

Stressful experience during early brain development has been shown to produce profound alterations in several mechanisms of adaptation, while several signs of behavioral and neuroendocrine impairment resulting from neonatal exposure to stress resemble symptoms of dysregulation associated with major depression. This study demonstrates that when applied concomitantly with the stressful challenge, the steroid GABA(A) receptor agonist 3,21-dihydropregnan-20-one (tetrahydrodeoxycorticosterone, THDOC) can attenuate the behavioral and neuroendocrine consequences of repeated maternal separation during early life, e.g., increased anxiety, an exaggerated adrenocortical secretory response to stress, impaired responsiveness to glucocorticoid feedback, and altered transcription of the genes encoding corticotropin-releasing hormone (CRH) in the hypothalamus and glucocorticoid receptors in the hippocampus. These data indicate that neuroactive steroid derivatives with GABA-agonistic properties may exert persisting stress-protective effects in the developing brain, and may form the basis for therapeutic agents which have the potential to prevent mental disorders resulting from adverse experience during neonatal life.

Full Text

The Full Text of this article is available as a PDF (147.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhatnagar S., Meaney M. J. Hypothalamic-pituitary-adrenal function in chronic intermittently cold-stressed neonatally handled and non handled rats. J Neuroendocrinol. 1995 Feb;7(2):97–108. doi: 10.1111/j.1365-2826.1995.tb00672.x. [DOI] [PubMed] [Google Scholar]
  2. Crawley J. N., Glowa J. R., Majewska M. D., Paul S. M. Anxiolytic activity of an endogenous adrenal steroid. Brain Res. 1986 Nov 29;398(2):382–385. doi: 10.1016/0006-8993(86)91500-3. [DOI] [PubMed] [Google Scholar]
  3. Dawson G. R., Tricklebank M. D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci. 1995 Feb;16(2):33–36. doi: 10.1016/s0165-6147(00)88973-7. [DOI] [PubMed] [Google Scholar]
  4. Hofer M. A. The organization of sleep and wakefulness after maternal separation in young rats. Dev Psychobiol. 1976 Mar;9(2):189–205. doi: 10.1002/dev.420090212. [DOI] [PubMed] [Google Scholar]
  5. Holsboer F., Spengler D., Heuser I. The role of corticotropin-releasing hormone in the pathogenesis of Cushing's disease, anorexia nervosa, alcoholism, affective disorders and dementia. Prog Brain Res. 1992;93:385–417. doi: 10.1016/s0079-6123(08)64586-0. [DOI] [PubMed] [Google Scholar]
  6. Imaki T., Vale W. Chlordiazepoxide attenuates stress-induced accumulation of corticotropin-releasing factor mRNA in the paraventricular nucleus. Brain Res. 1993 Oct 1;623(2):223–228. doi: 10.1016/0006-8993(93)91431-q. [DOI] [PubMed] [Google Scholar]
  7. Janus K. Effects of early separation of young rats from the mother on their open-field behavior. Physiol Behav. 1987;40(6):711–715. doi: 10.1016/0031-9384(87)90272-1. [DOI] [PubMed] [Google Scholar]
  8. Kavaliers M. Inhibitory influences of the adrenal steroid, 3 alpha, 5 alpha-tetrahydrodeoxycorticosterone [correction of tetrahydroxycorticosterone] on aggression and defeat-induced analgesia in mice. Psychopharmacology (Berl) 1988;95(4):488–492. doi: 10.1007/BF00172960. [DOI] [PubMed] [Google Scholar]
  9. Kellogg C. K. Benzodiazepines: influence on the developing brain. Prog Brain Res. 1988;73:207–228. doi: 10.1016/S0079-6123(08)60506-3. [DOI] [PubMed] [Google Scholar]
  10. Ladd C. O., Owens M. J., Nemeroff C. B. Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology. 1996 Apr;137(4):1212–1218. doi: 10.1210/endo.137.4.8625891. [DOI] [PubMed] [Google Scholar]
  11. Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 May 23;232(4753):1004–1007. doi: 10.1126/science.2422758. [DOI] [PubMed] [Google Scholar]
  12. Majewska M. D. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol. 1992;38(4):379–395. doi: 10.1016/0301-0082(92)90025-a. [DOI] [PubMed] [Google Scholar]
  13. Matthews K., Wilkinson L. S., Robbins T. W. Repeated maternal separation of preweanling rats attenuates behavioral responses to primary and conditioned incentives in adulthood. Physiol Behav. 1996 Jan;59(1):99–107. doi: 10.1016/0031-9384(95)02069-1. [DOI] [PubMed] [Google Scholar]
  14. Meaney M. J., Bhatnagar S., Larocque S., McCormick C., Shanks N., Sharma S., Smythe J., Viau V., Plotsky P. M. Individual differences in the hypothalamic-pituitary-adrenal stress response and the hypothalamic CRF system. Ann N Y Acad Sci. 1993 Oct 29;697:70–85. doi: 10.1111/j.1749-6632.1993.tb49924.x. [DOI] [PubMed] [Google Scholar]
  15. Mendelson W. B., Martin J. V., Perlis M., Wagner R., Majewska M. D., Paul S. M. Sleep induction by an adrenal steroid in the rat. Psychopharmacology (Berl) 1987;93(2):226–229. doi: 10.1007/BF00179939. [DOI] [PubMed] [Google Scholar]
  16. Noirot E. Ultrasounds and maternal behavior in small rodents. Dev Psychobiol. 1972;5(4):371–387. doi: 10.1002/dev.420050410. [DOI] [PubMed] [Google Scholar]
  17. O'Donnell D., Larocque S., Seckl J. R., Meaney M. J. Postnatal handling alters glucocorticoid, but not mineralocorticoid messenger RNA expression in the hippocampus of adult rats. Brain Res Mol Brain Res. 1994 Oct;26(1-2):242–248. doi: 10.1016/0169-328x(94)90096-5. [DOI] [PubMed] [Google Scholar]
  18. Owens M. J., Nemeroff C. B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev. 1991 Dec;43(4):425–473. [PubMed] [Google Scholar]
  19. Patchev V. K., Hassan A. H., Holsboer D. F., Almeida O. F. The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology. 1996 Dec;15(6):533–540. doi: 10.1016/S0893-133X(96)00096-6. [DOI] [PubMed] [Google Scholar]
  20. Patchev V. K., Hayashi S., Orikasa C., Almeida O. F. Implications of estrogen-dependent brain organization for gender differences in hypothalamo-pituitary-adrenal regulation. FASEB J. 1995 Mar;9(5):419–423. doi: 10.1096/fasebj.9.5.7896013. [DOI] [PubMed] [Google Scholar]
  21. Patchev V. K., Shoaib M., Holsboer F., Almeida O. F. The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience. 1994 Sep;62(1):265–271. doi: 10.1016/0306-4522(94)90330-1. [DOI] [PubMed] [Google Scholar]
  22. Paul S. M., Purdy R. H. Neuroactive steroids. FASEB J. 1992 Mar;6(6):2311–2322. [PubMed] [Google Scholar]
  23. Plotsky P. M., Meaney M. J. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993 May;18(3):195–200. doi: 10.1016/0169-328x(93)90189-v. [DOI] [PubMed] [Google Scholar]
  24. Plotsky P. M., Meaney M. J. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res. 1993 May;18(3):195–200. doi: 10.1016/0169-328x(93)90189-v. [DOI] [PubMed] [Google Scholar]
  25. Purdy R. H., Morrow A. L., Moore P. H., Jr, Paul S. M. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4553–4557. doi: 10.1073/pnas.88.10.4553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rage F., Jalaguier S., Rougeot C., Tapia-Arancibia L. GABA inhibition of somatostatin gene expression in cultured hypothalamic neurones. Neuroreport. 1993 Mar;4(3):320–322. doi: 10.1097/00001756-199303000-00024. [DOI] [PubMed] [Google Scholar]
  27. Reimer S., Höllt V. GABAergic regulation of striatal opioid gene expression. Brain Res Mol Brain Res. 1991 Apr;10(1):49–54. doi: 10.1016/0169-328x(91)90055-3. [DOI] [PubMed] [Google Scholar]
  28. Rosenfeld P., Suchecki D., Levine S. Multifactorial regulation of the hypothalamic-pituitary-adrenal axis during development. Neurosci Biobehav Rev. 1992 Winter;16(4):553–568. doi: 10.1016/s0149-7634(05)80196-4. [DOI] [PubMed] [Google Scholar]
  29. Rosenfeld P., van Eekelen J. A., Levine S., de Kloet E. R. Ontogeny of corticosteroid receptors in the brain. Cell Mol Neurobiol. 1993 Aug;13(4):295–319. doi: 10.1007/BF00711575. [DOI] [PubMed] [Google Scholar]
  30. Sapolsky R. M., Meaney M. J. Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res. 1986 Mar;396(1):64–76. doi: 10.1016/s0006-8993(86)80190-1. [DOI] [PubMed] [Google Scholar]
  31. Sarrieau A., Sharma S., Meaney M. J. Postnatal development and environmental regulation of hippocampal glucocorticoid and mineralocorticoid receptors. Brain Res. 1988 Sep 1;471(1):158–162. doi: 10.1016/0165-3806(88)90162-9. [DOI] [PubMed] [Google Scholar]
  32. Schroeder H., Humbert A. C., Koziel V., Desor D., Nehlig A. Behavioral and metabolic consequences of neonatal exposure to diazepam in rat pups. Exp Neurol. 1995 Jan;131(1):53–63. doi: 10.1016/0014-4886(95)90007-1. [DOI] [PubMed] [Google Scholar]
  33. Stanton M. E., Crofton K. M., Lau C. Behavioral development following daily episodes of mother-infant separation in the rat. Fundam Appl Toxicol. 1992 Oct;19(3):474–477. doi: 10.1016/0272-0590(92)90186-l. [DOI] [PubMed] [Google Scholar]
  34. Suchecki D., Nelson D. Y., Van Oers H., Levine S. Activation and inhibition of the hypothalamic-pituitary-adrenal axis of the neonatal rat: effects of maternal deprivation. Psychoneuroendocrinology. 1995;20(2):169–182. doi: 10.1016/0306-4530(94)00051-b. [DOI] [PubMed] [Google Scholar]
  35. Tucker J. C. Benzodiazepines and the developing rat: a critical review. Neurosci Biobehav Rev. 1985 Spring;9(1):101–111. doi: 10.1016/0149-7634(85)90036-3. [DOI] [PubMed] [Google Scholar]
  36. Walker C. D., Scribner K. A., Cascio C. S., Dallman M. F. The pituitary-adrenocortical system of neonatal rats is responsive to stress throughout development in a time-dependent and stressor-specific fashion. Endocrinology. 1991 Mar;128(3):1385–1395. doi: 10.1210/endo-128-3-1385. [DOI] [PubMed] [Google Scholar]
  37. Winslow J. T., Insel T. R. The infant rat separation paradigm: a novel test for novel anxiolytics. Trends Pharmacol Sci. 1991 Nov;12(11):402–404. doi: 10.1016/0165-6147(91)90616-z. [DOI] [PubMed] [Google Scholar]
  38. Zimmerberg B., Brunelli S. A., Hofer M. A. Reduction of rat pup ultrasonic vocalizations by the neuroactive steroid allopregnanolone. Pharmacol Biochem Behav. 1994 Mar;47(3):735–738. doi: 10.1016/0091-3057(94)90181-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES