Abstract
The annual urinary screening of Japanese children above 3 yr of age has identified a progressive proximal renal tubular disorder characterized by low molecular weight proteinuria, hypercalciuria, and nephrocalcinosis. The disorder, which has a familial predisposition and occurs predominantly in males, has similarities to three X-linked proximal renal tubular disorders that are due to mutations in the renal chloride channel gene, CLCN5. We have investigated four unrelated Japanese kindreds with this tubulopathy and have identified four different CLCN5 mutations (two nonsense, one missense, and one frameshift). These are predicted to lead to a loss of chloride channel function, and heterologous expression of the missense CLCN5 mutation in Xenopus oocytes demonstrated a 70% reduction in channel activity when compared with the wild-type. In addition, single-stranded conformation polymorphism (SSCP) analysis was found to be a sensitive and specific mutational screening method that detected > 75% of CLCN5 mutations. Thus, the results of our study expand the spectrum of clinical phenotypes associated with CLCN5 mutations to include this proximal renal tubular disorder of Japanese children. In addition, the mutational screening of CLCN5 by SSCP will help to supplement the clinical evaluation of the annual urinary screening program for this disorder.
Full Text
The Full Text of this article is available as a PDF (326.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolino A., Devoto M., Enia G., Zoccali C., Weissenbach J., Romeo G. Genetic mapping in the Xp11.2 region of a new form of X-linked hypophosphatemic rickets. Eur J Hum Genet. 1993;1(4):269–279. doi: 10.1159/000472424. [DOI] [PubMed] [Google Scholar]
- Brandt S., Jentsch T. J. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett. 1995 Dec 11;377(1):15–20. doi: 10.1016/0014-5793(95)01298-2. [DOI] [PubMed] [Google Scholar]
- Christensen E. I., Nielsen S. Structural and functional features of protein handling in the kidney proximal tubule. Semin Nephrol. 1991 Jul;11(4):414–439. [PubMed] [Google Scholar]
- Fisher S. E., Black G. C., Lloyd S. E., Hatchwell E., Wrong O., Thakker R. V., Craig I. W. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet. 1994 Nov;3(11):2053–2059. [PubMed] [Google Scholar]
- Fisher S. E., van Bakel I., Lloyd S. E., Pearce S. H., Thakker R. V., Craig I. W. Cloning and characterization of CLCN5, the human kidney chloride channel gene implicated in Dent disease (an X-linked hereditary nephrolithiasis). Genomics. 1995 Oct 10;29(3):598–606. doi: 10.1006/geno.1995.9960. [DOI] [PubMed] [Google Scholar]
- Friedman P. A., Gesek F. A. Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev. 1995 Jul;75(3):429–471. doi: 10.1152/physrev.1995.75.3.429. [DOI] [PubMed] [Google Scholar]
- Frymoyer P. A., Scheinman S. J., Dunham P. B., Jones D. B., Hueber P., Schroeder E. T. X-linked recessive nephrolithiasis with renal failure. N Engl J Med. 1991 Sep 5;325(10):681–686. doi: 10.1056/NEJM199109053251003. [DOI] [PubMed] [Google Scholar]
- Gesek F. A., Friedman P. A. Calcitonin stimulates calcium transport in distal convoluted tubule cells. Am J Physiol. 1993 Apr;264(4 Pt 2):F744–F751. doi: 10.1152/ajprenal.1993.264.4.F744. [DOI] [PubMed] [Google Scholar]
- Gesek F. A., Friedman P. A. On the mechanism of parathyroid hormone stimulation of calcium uptake by mouse distal convoluted tubule cells. J Clin Invest. 1992 Sep;90(3):749–758. doi: 10.1172/JCI115947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grompe M. The rapid detection of unknown mutations in nucleic acids. Nat Genet. 1993 Oct;5(2):111–117. doi: 10.1038/ng1093-111. [DOI] [PubMed] [Google Scholar]
- Hebert S. C. Medical genetics. Crystal-clear chloride channels. Nature. 1996 Feb 1;379(6564):398–399. doi: 10.1038/379398a0. [DOI] [PubMed] [Google Scholar]
- Hymes L. C., Warshaw B. L. Idiopathic hypercalciuria. Renal and absorptive subtypes in children. Am J Dis Child. 1984 Feb;138(2):176–180. doi: 10.1001/archpedi.1984.02140400058014. [DOI] [PubMed] [Google Scholar]
- Igarashi T., Hayakawa H., Shiraga H., Kawato H., Yan K., Kawaguchi H., Yamanaka T., Tsuchida S., Akagi K. Hypercalciuria and nephrocalcinosis in patients with idiopathic low-molecular-weight proteinuria in Japan: is the disease identical to Dent's disease in United Kingdom? Nephron. 1995;69(3):242–247. doi: 10.1159/000188464. [DOI] [PubMed] [Google Scholar]
- Jentsch T. J., Günther W., Pusch M., Schwappach B. Properties of voltage-gated chloride channels of the ClC gene family. J Physiol. 1995 Jan;482:19S–25S. doi: 10.1113/jphysiol.1995.sp020560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jentsch T. J., Steinmeyer K., Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature. 1990 Dec 6;348(6301):510–514. doi: 10.1038/348510a0. [DOI] [PubMed] [Google Scholar]
- Krook A., Stratton I. M., O'Rahilly S. Rapid and simultaneous detection of multiple mutations by pooled and multiplex single nucleotide primer extension: application to the study of insulin-responsive glucose transporter and insulin receptor mutations in non-insulin-dependent diabetes. Hum Mol Genet. 1992 Sep;1(6):391–395. doi: 10.1093/hmg/1.6.391. [DOI] [PubMed] [Google Scholar]
- Kuppuswamy M. N., Hoffmann J. W., Kasper C. K., Spitzer S. G., Groce S. L., Bajaj S. P. Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1143–1147. doi: 10.1073/pnas.88.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langman C. B., Moore E. S. Hypercalciuria in clinical pediatrics. A review. Clin Pediatr (Phila) 1984 Mar;23(3):135–137. doi: 10.1177/000992288402300301. [DOI] [PubMed] [Google Scholar]
- Lloyd S. E., Pearce S. H., Fisher S. E., Steinmeyer K., Schwappach B., Scheinman S. J., Harding B., Bolino A., Devoto M., Goodyer P. A common molecular basis for three inherited kidney stone diseases. Nature. 1996 Feb 1;379(6564):445–449. doi: 10.1038/379445a0. [DOI] [PubMed] [Google Scholar]
- Lorenz C., Pusch M., Jentsch T. J. Heteromultimeric CLC chloride channels with novel properties. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13362–13366. doi: 10.1073/pnas.93.23.13362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore E. S., Coe F. L., McMann B. J., Favus M. J. Idiopathic hypercalciuria in children: prevalence and metabolic characteristics. J Pediatr. 1978 Jun;92(6):906–910. doi: 10.1016/s0022-3476(78)80358-8. [DOI] [PubMed] [Google Scholar]
- Murakami T., Kawakami H. The clinical significance of asymptomatic low molecular weight proteinuria detected on routine screening of children in Japan: a survey of 53 patients. Clin Nephrol. 1990 Jan;33(1):12–19. [PubMed] [Google Scholar]
- Pearce S. H., Trump D., Wooding C., Besser G. M., Chew S. L., Grant D. B., Heath D. A., Hughes I. A., Paterson C. R., Whyte M. P. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest. 1995 Dec;96(6):2683–2692. doi: 10.1172/JCI118335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce S. H., Williamson C., Kifor O., Bai M., Coulthard M. G., Davies M., Lewis-Barned N., McCredie D., Powell H., Kendall-Taylor P. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996 Oct 10;335(15):1115–1122. doi: 10.1056/NEJM199610103351505. [DOI] [PubMed] [Google Scholar]
- Pook M. A., Wrong O., Wooding C., Norden A. G., Feest T. G., Thakker R. V. Dent's disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Hum Mol Genet. 1993 Dec;2(12):2129–2134. doi: 10.1093/hmg/2.12.2129. [DOI] [PubMed] [Google Scholar]
- Pusch M., Ludewig U., Rehfeldt A., Jentsch T. J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature. 1995 Feb 9;373(6514):527–531. doi: 10.1038/373527a0. [DOI] [PubMed] [Google Scholar]
- Scheinman S. J., Pook M. A., Wooding C., Pang J. T., Frymoyer P. A., Thakker R. V. Mapping the gene causing X-linked recessive nephrolithiasis to Xp11.22 by linkage studies. J Clin Invest. 1993 Jun;91(6):2351–2357. doi: 10.1172/JCI116467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmeyer K., Lorenz C., Pusch M., Koch M. C., Jentsch T. J. Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J. 1994 Feb 15;13(4):737–743. doi: 10.1002/j.1460-2075.1994.tb06315.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmeyer K., Schwappach B., Bens M., Vandewalle A., Jentsch T. J. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem. 1995 Dec 29;270(52):31172–31177. doi: 10.1074/jbc.270.52.31172. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Okada T., Higuchi A., Mase D., Kobayashi O. Asymptomatic low molecular weight proteinuria: a report on 5 cases. Clin Nephrol. 1985 May;23(5):249–254. [PubMed] [Google Scholar]
- Thiemann A., Gründer S., Pusch M., Jentsch T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992 Mar 5;356(6364):57–60. doi: 10.1038/356057a0. [DOI] [PubMed] [Google Scholar]
- Wrong O. M., Norden A. G., Feest T. G. Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM. 1994 Aug;87(8):473–493. [PubMed] [Google Scholar]