Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 1;99(5):996–1009. doi: 10.1172/JCI119265

Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves.

S S Srivatsa 1, P J Harrity 1, P B Maercklein 1, L Kleppe 1, J Veinot 1, W D Edwards 1, C M Johnson 1, L A Fitzpatrick 1
PMCID: PMC507908  PMID: 9062358

Abstract

Dystrophic mineralization remains the leading cause of stenotic or regurgitant failure in native human and porcine bioprosthetic heart valves. We hypothesized that cellular expression of noncollagenous matrix proteins (osteopontin, osteocalcin, and osteonectin) that regulate skeletal mineralization may orchestrate valvular calcification. Porcine bioprosthetic heart valves and native human heart valves obtained during replacement surgery were analyzed for cells, matrix proteins that regulate mineralization, and vessels. Cell accumulation and calcification were correlated for both valve types (rho = 0.75, P = 0.01, native; rho = 0.42, P = 0.08, bioprosthetic). Osteopontin expression correlated with cell accumulation (rho = 0.58, P = 0.04) and calcification (rho = 0.52, P = 0.06) for bioprosthetic valves. Osteocalcin expression correlated with calcification (rho = 0.77, P = 0.04) and cell accumulation (rho = 0.69, P = 0.07) in native valves. Comparisons of calcified versus noncalcified native and bioprosthetic valves for averaged total matrix protein mRNA signal score revealed increased noncollagenous proteins mRNA levels in calcified valves (P = 0.07, group I vs. group II; P = 0.02, group III vs. group IV). When stratified according to positive versus negative mRNA signal status, both calcified bioprosthetic valves (P = 0.03) and calcified native valves (P = 0.01) were significantly more positive for noncollagenous proteins mRNA than their noncalcified counterparts. Local cell-associated expression of proteins regulating mineralization suggests a highly coordinated mechanism of bioprosthetic and native valve calcification analogous to physiologic bone mineralization. Modulation of cellular infiltration or cellular expression of matrix proteins that regulate mineralization, may offer an effective therapeutic approach to the prevention of valve failure secondary to calcification.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. J., Highison G. J., DiDio L. J., Zerbini E. J., Puig L. B. Evidence of remodeling in dura mater cardiac valves. J Thorac Cardiovasc Surg. 1982 Aug;84(2):267–281. [PubMed] [Google Scholar]
  2. Bosse A., Wuisman P., Jones D. B., Schwarz K. Noncollagenous proteins in heterotopic ossification. Immunohistochemical analysis in 15 paraplegies. Acta Orthop Scand. 1993 Dec;64(6):634–638. doi: 10.3109/17453679308994586. [DOI] [PubMed] [Google Scholar]
  3. Boström K., Watson K. E., Horn S., Wortham C., Herman I. M., Demer L. L. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993 Apr;91(4):1800–1809. doi: 10.1172/JCI116391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahm M., Lyman W. D., Schwell A. B., Factor S. M., Frater R. W. Immunogenicity of glutaraldehyde-tanned bovine pericardium. J Thorac Cardiovasc Surg. 1990 Jun;99(6):1082–1090. [PubMed] [Google Scholar]
  5. Demer L. L. A skeleton in the atherosclerosis closet. Circulation. 1995 Oct 15;92(8):2029–2032. doi: 10.1161/01.cir.92.8.2029. [DOI] [PubMed] [Google Scholar]
  6. Denhardt D. T., Guo X. Osteopontin: a protein with diverse functions. FASEB J. 1993 Dec;7(15):1475–1482. [PubMed] [Google Scholar]
  7. Fisher L. W., Stubbs J. T., 3rd, Young M. F. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop Scand Suppl. 1995 Oct;266:61–65. [PubMed] [Google Scholar]
  8. Fitzpatrick L. A., Severson A., Edwards W. D., Ingram R. T. Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest. 1994 Oct;94(4):1597–1604. doi: 10.1172/JCI117501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gadeau A. P., Campan M., Millet D., Candresse T., Desgranges C. Osteopontin overexpression is associated with arterial smooth muscle cell proliferation in vitro. Arterioscler Thromb. 1993 Jan;13(1):120–125. doi: 10.1161/01.atv.13.1.120. [DOI] [PubMed] [Google Scholar]
  10. Giachelli C. M., Bae N., Almeida M., Denhardt D. T., Alpers C. E., Schwartz S. M. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993 Oct;92(4):1686–1696. doi: 10.1172/JCI116755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giachelli C. M., Liaw L., Murry C. E., Schwartz S. M., Almeida M. Osteopontin expression in cardiovascular diseases. Ann N Y Acad Sci. 1995 Apr 21;760:109–126. doi: 10.1111/j.1749-6632.1995.tb44624.x. [DOI] [PubMed] [Google Scholar]
  12. Glowacki J., Lian J. B. Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-deplete bone implants. Cell Differ. 1987 Sep;21(4):247–254. doi: 10.1016/0045-6039(87)90479-9. [DOI] [PubMed] [Google Scholar]
  13. Harasaki H., McMahon J., Richards T., Goldcamp J., Kiraly R., Nose Y. Calcification in cardiovascular implants: degraded cell related phenomena. Trans Am Soc Artif Intern Organs. 1985;31:489–494. [PubMed] [Google Scholar]
  14. Hilbert S. L., Ferrans V. J., Tomita Y., Eidbo E. E., Jones M. Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. J Thorac Cardiovasc Surg. 1987 Sep;94(3):419–429. [PubMed] [Google Scholar]
  15. Hirota S., Imakita M., Kohri K., Ito A., Morii E., Adachi S., Kim H. M., Kitamura Y., Yutani C., Nomura S. Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am J Pathol. 1993 Oct;143(4):1003–1008. [PMC free article] [PubMed] [Google Scholar]
  16. Hu D. D., Lin E. C., Kovach N. L., Hoyer J. R., Smith J. W. A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. J Biol Chem. 1995 Nov 3;270(44):26232–26238. doi: 10.1074/jbc.270.44.26232. [DOI] [PubMed] [Google Scholar]
  17. Ikeda T., Shirasawa T., Esaki Y., Yoshiki S., Hirokawa K. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest. 1993 Dec;92(6):2814–2820. doi: 10.1172/JCI116901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ingram R. T., Clarke B. L., Fisher L. W., Fitzpatrick L. A. Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res. 1993 Sep;8(9):1019–1029. doi: 10.1002/jbmr.5650080902. [DOI] [PubMed] [Google Scholar]
  19. Ingram R. T., Park Y. K., Clarke B. L., Fitzpatrick L. A. Age- and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodeling. J Clin Invest. 1994 Mar;93(3):989–997. doi: 10.1172/JCI117106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jundt G., Berghäuser K. H., Termine J. D., Schulz A. Osteonectin--a differentiation marker of bone cells. Cell Tissue Res. 1987 May;248(2):409–415. doi: 10.1007/BF00218209. [DOI] [PubMed] [Google Scholar]
  21. Kim K. M. Calcification of matrix vesicles in human aortic valve and aortic media. Fed Proc. 1976 Feb;35(2):156–162. [PubMed] [Google Scholar]
  22. Kim K. M., Valigorsky J. M., Mergner W. J., Jones R. T., Pendergrass R. F., Trump B. F. Aging changes in the human aortic valve in relation to dystrophic calcification. Hum Pathol. 1976 Jan;7(1):47–60. doi: 10.1016/s0046-8177(76)80005-6. [DOI] [PubMed] [Google Scholar]
  23. Levy R. J., Gundberg C., Scheinman R. The identification of the vitamin K-dependent bone protein osteocalcin as one of the gamma-carboxyglutamic acid containing proteins present in calcified atherosclerotic plaque and mineralized heart valves. Atherosclerosis. 1983 Jan;46(1):49–56. doi: 10.1016/0021-9150(83)90163-6. [DOI] [PubMed] [Google Scholar]
  24. Levy R. J., Schoen F. J., Howard S. L. Mechanism of calcification of porcine bioprosthetic aortic valve cusps: role of T-lymphocytes. Am J Cardiol. 1983 Sep 1;52(5):629–631. doi: 10.1016/0002-9149(83)90040-1. [DOI] [PubMed] [Google Scholar]
  25. Levy R. J., Schoen F. J., Levy J. T., Nelson A. C., Howard S. L., Oshry L. J. Biologic determinants of dystrophic calcification and osteocalcin deposition in glutaraldehyde-preserved porcine aortic valve leaflets implanted subcutaneously in rats. Am J Pathol. 1983 Nov;113(2):143–155. [PMC free article] [PubMed] [Google Scholar]
  26. Levy R. J., Zenker J. A., Bernhard W. F. Porcine bioprosthetic valve calcification in bovine left ventricle-aorta shunts: studies of the deposition of vitamin K-dependent proteins. Ann Thorac Surg. 1983 Aug;36(2):187–192. doi: 10.1016/s0003-4975(10)60454-7. [DOI] [PubMed] [Google Scholar]
  27. Levy R. J., Zenker J. A., Lian J. B. Vitamin K-dependent calcium binding proteins in aortic valve calcification. J Clin Invest. 1980 Feb;65(2):563–566. doi: 10.1172/JCI109700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liaw L., Almeida M., Hart C. E., Schwartz S. M., Giachelli C. M. Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res. 1994 Feb;74(2):214–224. doi: 10.1161/01.res.74.2.214. [DOI] [PubMed] [Google Scholar]
  29. Liaw L., Lindner V., Schwartz S. M., Chambers A. F., Giachelli C. M. Osteopontin and beta 3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp-dependent endothelial migration in vitro. Circ Res. 1995 Oct;77(4):665–672. doi: 10.1161/01.res.77.4.665. [DOI] [PubMed] [Google Scholar]
  30. Liaw L., Skinner M. P., Raines E. W., Ross R., Cheresh D. A., Schwartz S. M., Giachelli C. M. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest. 1995 Feb;95(2):713–724. doi: 10.1172/JCI117718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McKee M. D., Nanci A., Landis W. J., Gotoh Y., Gerstenfeld L. C., Glimcher M. J. Effects of fixation and demineralization on the retention of bone phosphoprotein and other matrix components as evaluated by biochemical analyses and quantitative immunocytochemistry. J Bone Miner Res. 1991 Sep;6(9):937–945. doi: 10.1002/jbmr.5650060907. [DOI] [PubMed] [Google Scholar]
  32. Mills P., Leech G., Davies M., Leathan A. The natural history of a non-stenotic bicuspid aortic valve. Br Heart J. 1978 Sep;40(9):951–957. doi: 10.1136/hrt.40.9.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miyazaki Y., Setoguchi M., Yoshida S., Higuchi Y., Akizuki S., Yamamoto S. The mouse osteopontin gene. Expression in monocytic lineages and complete nucleotide sequence. J Biol Chem. 1990 Aug 25;265(24):14432–14438. [PubMed] [Google Scholar]
  34. O'Brien E. R., Garvin M. R., Stewart D. K., Hinohara T., Simpson J. B., Schwartz S. M., Giachelli C. M. Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arterioscler Thromb. 1994 Oct;14(10):1648–1656. doi: 10.1161/01.atv.14.10.1648. [DOI] [PubMed] [Google Scholar]
  35. O'Brien E. R., Garvin M. R., Stewart D. K., Hinohara T., Simpson J. B., Schwartz S. M., Giachelli C. M. Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques. Arterioscler Thromb. 1994 Oct;14(10):1648–1656. doi: 10.1161/01.atv.14.10.1648. [DOI] [PubMed] [Google Scholar]
  36. O'Brien K. D., Kuusisto J., Reichenbach D. D., Ferguson M., Giachelli C., Alpers C. E., Otto C. M. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995 Oct 15;92(8):2163–2168. doi: 10.1161/01.cir.92.8.2163. [DOI] [PubMed] [Google Scholar]
  37. O'Keefe J. H., Jr, Lavie C. J., Nishimura R. A., Edwards W. D. Degenerative aortic stenosis. One effect of the graying of America. Postgrad Med. 1991 Feb 1;89(2):143-6,151-4. doi: 10.1080/00325481.1991.11700822. [DOI] [PubMed] [Google Scholar]
  38. Olsson M., Dalsgaard C. J., Haegerstrand A., Rosenqvist M., Rydén L., Nilsson J. Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol. 1994 Apr;23(5):1162–1170. doi: 10.1016/0735-1097(94)90606-8. [DOI] [PubMed] [Google Scholar]
  39. Olsson M., Rosenqvist M., Nilsson J. Expression of HLA-DR antigen and smooth muscle cell differentiation markers by valvular fibroblasts in degenerative aortic stenosis. J Am Coll Cardiol. 1994 Dec;24(7):1664–1671. doi: 10.1016/0735-1097(94)90172-4. [DOI] [PubMed] [Google Scholar]
  40. Patarca R., Saavedra R. A., Cantor H. Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene. Crit Rev Immunol. 1993;13(3-4):225–246. [PubMed] [Google Scholar]
  41. Permanyer-Miralda G., Soler-Soler J., Casan-Cava J. M., Tornos-Mas M. P. Medium term fate of dura mater valvular bioprostheses. Eur Heart J. 1980 Jun;1(3):195–199. doi: 10.1093/oxfordjournals.eurheartj.a061118. [DOI] [PubMed] [Google Scholar]
  42. Price P. A. Vitamin K-dependent formation of bone Gla protein (osteocalcin) and its function. Vitam Horm. 1985;42:65–108. doi: 10.1016/s0083-6729(08)60061-8. [DOI] [PubMed] [Google Scholar]
  43. Raines E. W., Lane T. F., Iruela-Arispe M. L., Ross R., Sage E. H. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1281–1285. doi: 10.1073/pnas.89.4.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roach H. I. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int. 1994 Jun;18(6):617–628. doi: 10.1006/cbir.1994.1088. [DOI] [PubMed] [Google Scholar]
  45. Roberts W. C. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol. 1970 Jul;26(1):72–83. doi: 10.1016/0002-9149(70)90761-7. [DOI] [PubMed] [Google Scholar]
  46. Robey P. G., Fedarko N. S., Hefferan T. E., Bianco P., Vetter U. K., Grzesik W., Friedenstein A., Van der Pluijm G., Mintz K. P., Young M. F. Structure and molecular regulation of bone matrix proteins. J Bone Miner Res. 1993 Dec;8 (Suppl 2):S483–S487. doi: 10.1002/jbmr.5650081310. [DOI] [PubMed] [Google Scholar]
  47. Ross F. P., Chappel J., Alvarez J. I., Sander D., Butler W. T., Farach-Carson M. C., Mintz K. A., Robey P. G., Teitelbaum S. L., Cheresh D. A. Interactions between the bone matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin alpha v beta 3 potentiate bone resorption. J Biol Chem. 1993 May 5;268(13):9901–9907. [PubMed] [Google Scholar]
  48. SELL S., SCULLY R. E. AGING CHANGES IN THE AORTIC AND MITRAL VALVES. HISTOLOGIC AND HISTOCHEMICAL STUDIES, WITH OBSERVATIONS ON THE PATHOGENESIS OF CALCIFIC AORTIC STENOSIS AND CALCIFICATION OF THE MITRAL ANNULUS. Am J Pathol. 1965 Mar;46:345–365. [PMC free article] [PubMed] [Google Scholar]
  49. Schoen F. J. Cardiac valve prostheses: pathological and bioengineering considerations. J Card Surg. 1987 Mar;2(1):65–108. doi: 10.1111/j.1540-8191.1987.tb00174.x. [DOI] [PubMed] [Google Scholar]
  50. Schoen F. J. Cardiac valve prostheses: review of clinical status and contemporary biomaterials issues. J Biomed Mater Res. 1987 Apr;21(A1):91–117. [PubMed] [Google Scholar]
  51. Schoen F. J., Harasaki H., Kim K. M., Anderson H. C., Levy R. J. Biomaterial-associated calcification: pathology, mechanisms, and strategies for prevention. J Biomed Mater Res. 1988 Apr;22(A1):11–36. [PubMed] [Google Scholar]
  52. Schoen F. J., Hobson C. E. Anatomic analysis of removed prosthetic heart valves: causes of failure of 33 mechanical valves and 58 bioprostheses, 1980 to 1983. Hum Pathol. 1985 Jun;16(6):549–559. doi: 10.1016/s0046-8177(85)80103-9. [DOI] [PubMed] [Google Scholar]
  53. Schoen F. J., Kujovich J. L., Levy R. J., Sutton M. S. Bioprosthetic valve failure. Cardiovasc Clin. 1988;18(2):289–317. [PubMed] [Google Scholar]
  54. Severson A. R., Ingram R. T., Fitzpatrick L. A. Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro. In Vitro Cell Dev Biol Anim. 1995 Dec;31(11):853–857. doi: 10.1007/BF02634569. [DOI] [PubMed] [Google Scholar]
  55. Seyedin S. M., Thomas T. C., Thompson A. Y., Rosen D. M., Piez K. A. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2267–2271. doi: 10.1073/pnas.82.8.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shanahan C. M., Cary N. R., Metcalfe J. C., Weissberg P. L. High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest. 1994 Jun;93(6):2393–2402. doi: 10.1172/JCI117246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Singh R. P., Patarca R., Schwartz J., Singh P., Cantor H. Definition of a specific interaction between the early T lymphocyte activation 1 (Eta-1) protein and murine macrophages in vitro and its effect upon macrophages in vivo. J Exp Med. 1990 Jun 1;171(6):1931–1942. doi: 10.1084/jem.171.6.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stein G. S., Lian J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993 Aug;14(4):424–442. doi: 10.1210/edrv-14-4-424. [DOI] [PubMed] [Google Scholar]
  59. Takano-Yamamoto T., Takemura T., Kitamura Y., Nomura S. Site-specific expression of mRNAs for osteonectin, osteocalcin, and osteopontin revealed by in situ hybridization in rat periodontal ligament during physiological tooth movement. J Histochem Cytochem. 1994 Jul;42(7):885–896. doi: 10.1177/42.7.8014472. [DOI] [PubMed] [Google Scholar]
  60. Thiede M. A., Smock S. L., Petersen D. N., Grasser W. A., Thompson D. D., Nishimoto S. K. Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology. 1994 Sep;135(3):929–937. doi: 10.1210/endo.135.3.8070388. [DOI] [PubMed] [Google Scholar]
  61. Thiede M. A., Smock S. L., Petersen D. N., Grasser W. A., Thompson D. D., Nishimoto S. K. Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology. 1994 Sep;135(3):929–937. doi: 10.1210/endo.135.3.8070388. [DOI] [PubMed] [Google Scholar]
  62. Tremble P. M., Lane T. F., Sage E. H., Werb Z. SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol. 1993 Jun;121(6):1433–1444. doi: 10.1083/jcb.121.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Watson K. E., Boström K., Ravindranath R., Lam T., Norton B., Demer L. L. TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest. 1994 May;93(5):2106–2113. doi: 10.1172/JCI117205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Weber G. F., Ashkar S., Glimcher M. J., Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 1996 Jan 26;271(5248):509–512. doi: 10.1126/science.271.5248.509. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES