Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 1;99(5):1016–1027. doi: 10.1172/JCI119229

Vascular hypertrophy in experimental diabetes. Role of advanced glycation end products.

J R Rumble 1, M E Cooper 1, T Soulis 1, A Cox 1, L Wu 1, S Youssef 1, M Jasik 1, G Jerums 1, R E Gilbert 1
PMCID: PMC507910  PMID: 9062360

Abstract

The accelerated formation of advanced glycation end products (AGEs) and the overexpression of transforming growth factor beta (TGF-beta) have both been implicated in the pathogenesis of diabetic microvascular and macrovascular complications. Previous studies in our laboratory have demonstrated that the vascular changes in diabetes include hypertrophy of the mesenteric vasculature. To examine the role of AGEs in this process, streptozotocin-induced diabetic rats and control animals were randomized to receive aminoguanidine, an inhibitor of AGE formation, or no treatment. Animals were studied at 7 d, 3 wk, and 8 mo after induction of diabetes. When compared with control animals, diabetes was associated with an increase in mesenteric vascular weight and an increase in media wall/lumen area. By Northern analysis, TGF-beta1 gene expression was increased 100-150% (P < 0.01) and alpha1 (IV) collagen gene expression was similarly elevated to 30-110% compared to controls (P < 0.05). AGEs and extracellular matrix were present in abundance in diabetic but not in control vessels. Treatment of diabetic rats with aminoguanidine resulted in significant amelioration of the described pathological changes including overexpression of TGF-beta1 and alpha1 (IV) collagen. These data implicate the formation of AGEs in TGF-beta overexpression and tissue changes which accompany the diabetic state.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. J., Cooper M. E., O'Brien R. C., Bach L. A., Jackson B., Jerums G. Glomerular filtration rate in streptozocin-induced diabetic rats. Role of exchangeable sodium, vasoactive hormones, and insulin therapy. Diabetes. 1990 Oct;39(10):1182–1190. doi: 10.2337/diab.39.10.1182. [DOI] [PubMed] [Google Scholar]
  2. Border W. A., Noble N. A. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994 Nov 10;331(19):1286–1292. doi: 10.1056/NEJM199411103311907. [DOI] [PubMed] [Google Scholar]
  3. Brenner B. M. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int. 1983 Apr;23(4):647–655. doi: 10.1038/ki.1983.72. [DOI] [PubMed] [Google Scholar]
  4. Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes. 1985 Sep;34(9):938–941. doi: 10.2337/diab.34.9.938. [DOI] [PubMed] [Google Scholar]
  5. Bucala R., Tracey K. J., Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest. 1991 Feb;87(2):432–438. doi: 10.1172/JCI115014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buñag R. D. Validation in awake rats of a tail-cuff method for measuring systolic pressure. J Appl Physiol. 1973 Feb;34(2):279–282. doi: 10.1152/jappl.1973.34.2.279. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Cohen M. P., Ziyadeh F. N. Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol. 1996 Feb;7(2):183–190. doi: 10.1681/ASN.V72183. [DOI] [PubMed] [Google Scholar]
  9. Cooper M. E., Allen T. J., O'Brien R. C., Papazoglou D., Clarke B. E., Jerums G., Doyle A. E. Nephropathy in model combining genetic hypertension with experimental diabetes. Enalapril versus hydralazine and metoprolol therapy. Diabetes. 1990 Dec;39(12):1575–1579. doi: 10.2337/diab.39.12.1575. [DOI] [PubMed] [Google Scholar]
  10. Cooper M. E., Rumble J., Komers R., Du H. C., Jandeleit K., Chou S. T. Diabetes-associated mesenteric vascular hypertrophy is attenuated by angiotensin-converting enzyme inhibition. Diabetes. 1994 Oct;43(10):1221–1228. doi: 10.2337/diab.43.10.1221. [DOI] [PubMed] [Google Scholar]
  11. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
  12. Duncan M. K., Shimamura T., Chada K. Expression of the helix-loop-helix protein, Id, during branching morphogenesis in the kidney. Kidney Int. 1994 Aug;46(2):324–332. doi: 10.1038/ki.1994.278. [DOI] [PubMed] [Google Scholar]
  13. Dybdahl H., Ledet T. Diabetic macroangiopathy. Quantitative histopathological studies of the extramural coronary arteries from type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1987 Nov;30(11):882–886. [PubMed] [Google Scholar]
  14. Floege J., Alpers C. E., Burns M. W., Pritzl P., Gordon K., Couser W. G., Johnson R. J. Glomerular cells, extracellular matrix accumulation, and the development of glomerulosclerosis in the remnant kidney model. Lab Invest. 1992 Apr;66(4):485–497. [PubMed] [Google Scholar]
  15. Fukui M., Nakamura T., Ebihara I., Makita Y., Osada S., Tomino Y., Koide H. Effects of enalapril on endothelin-1 and growth factor gene expression in diabetic rat glomeruli. J Lab Clin Med. 1994 May;123(5):763–768. [PubMed] [Google Scholar]
  16. Gibbons G. H., Pratt R. E., Dzau V. J. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest. 1992 Aug;90(2):456–461. doi: 10.1172/JCI115881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gilbert R. E., McNally P. G., Cox A., Dziadek M., Rumble J., Cooper M. E., Jerums G. SPARC gene expression is reduced in early diabetes-related kidney growth. Kidney Int. 1995 Oct;48(4):1216–1225. doi: 10.1038/ki.1995.405. [DOI] [PubMed] [Google Scholar]
  18. González J., Fevery J. Spontaneously diabetic biobreeding rats and impairment of bile acid-independent bile flow and increased biliary bilirubin, calcium and lipid secretion. Hepatology. 1992 Aug;16(2):426–432. doi: 10.1002/hep.1840160222. [DOI] [PubMed] [Google Scholar]
  19. Griffin S. A., Brown W. C., MacPherson F., McGrath J. C., Wilson V. G., Korsgaard N., Mulvany M. J., Lever A. F. Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension. 1991 May;17(5):626–635. doi: 10.1161/01.hyp.17.5.626. [DOI] [PubMed] [Google Scholar]
  20. Gugliucci A., Bendayan M. Renal fate of circulating advanced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells. Diabetologia. 1996 Feb;39(2):149–160. doi: 10.1007/BF00403957. [DOI] [PubMed] [Google Scholar]
  21. Hammes H. P., Strödter D., Weiss A., Bretzel R. G., Federlin K., Brownlee M. Secondary intervention with aminoguanidine retards the progression of diabetic retinopathy in the rat model. Diabetologia. 1995 Jun;38(6):656–660. doi: 10.1007/BF00401835. [DOI] [PubMed] [Google Scholar]
  22. Hill M. A., Ege E. A. Active and passive mechanical properties of isolated arterioles from STZ-induced diabetic rats. Effect of aminoguanidine treatment. Diabetes. 1994 Dec;43(12):1450–1456. doi: 10.2337/diab.43.12.1450. [DOI] [PubMed] [Google Scholar]
  23. Huijberts M. S., Wolffenbuttel B. H., Boudier H. A., Crijns F. R., Kruseman A. C., Poitevin P., Lévy B. I. Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest. 1993 Sep;92(3):1407–1411. doi: 10.1172/JCI116716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hulthén U. L., Cao Z., Rumble J. R., Cooper M. E., Johnston C. I. Vascular hypertrophy and albumin permeability in a rat model combining hypertension and diabetes mellitus. Effects of calcium antagonism, angiotensin converting enzyme inhibition, and angiotensin II-AT1-receptor blockade. Am J Hypertens. 1996 Sep;9(9):895–901. doi: 10.1016/s0895-7061(96)00177-x. [DOI] [PubMed] [Google Scholar]
  25. Kagami S., Border W. A., Miller D. E., Noble N. A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest. 1994 Jun;93(6):2431–2437. doi: 10.1172/JCI117251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kakinuma Y., Kawamura T., Bills T., Yoshioka T., Ichikawa I., Fogo A. Blood pressure-independent effect of angiotensin inhibition on vascular lesions of chronic renal failure. Kidney Int. 1992 Jul;42(1):46–55. doi: 10.1038/ki.1992.259. [DOI] [PubMed] [Google Scholar]
  27. Kiff R. J., Gardiner S. M., Compton A. M., Bennett T. The effects of endothelin-1 and NG-nitro-L-arginine methyl ester on regional haemodynamics in conscious rats with streptozotocin-induced diabetes mellitus. Br J Pharmacol. 1991 Jun;103(2):1321–1326. doi: 10.1111/j.1476-5381.1991.tb09787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kim S. J., Denhez F., Kim K. Y., Holt J. T., Sporn M. B., Roberts A. B. Activation of the second promoter of the transforming growth factor-beta 1 gene by transforming growth factor-beta 1 and phorbol ester occurs through the same target sequences. J Biol Chem. 1989 Nov 15;264(32):19373–19378. [PubMed] [Google Scholar]
  29. Koh G. Y., Kim S. J., Klug M. G., Park K., Soonpaa M. H., Field L. J. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis. J Clin Invest. 1995 Jan;95(1):114–121. doi: 10.1172/JCI117627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Komers R., Allen T. J., Cooper M. E. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Diabetes. 1994 Oct;43(10):1190–1197. doi: 10.2337/diab.43.10.1190. [DOI] [PubMed] [Google Scholar]
  31. Kranzhöfer R., Schirmer J., Schömig A., von Hodenberg E., Pestel E., Metz J., Lang H. J., Kübler W. Suppression of neointimal thickening and smooth muscle cell proliferation after arterial injury in the rat by inhibitors of Na(+)-H+ exchange. Circ Res. 1993 Aug;73(2):264–268. doi: 10.1161/01.res.73.2.264. [DOI] [PubMed] [Google Scholar]
  32. Li Y. M., Steffes M., Donnelly T., Liu C., Fuh H., Basgen J., Bucala R., Vlassara H. Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3902–3907. doi: 10.1073/pnas.93.9.3902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. MacKay K., Striker L. J., Stauffer J. W., Doi T., Agodoa L. Y., Striker G. E. Transforming growth factor-beta. Murine glomerular receptors and responses of isolated glomerular cells. J Clin Invest. 1989 Apr;83(4):1160–1167. doi: 10.1172/JCI113996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Monnier V. M., Stevens V. J., Cerami A. Maillard reactions involving proteins and carbohydrates in vivo: relevance to diabetes mellitus and aging. Prog Food Nutr Sci. 1981;5(1-6):315–327. [PubMed] [Google Scholar]
  35. Nakamura T., Takahashi T., Fukui M., Ebihara I., Osada S., Tomino Y., Koide H. Enalapril attenuates increased gene expression of extracellular matrix components in diabetic rats. J Am Soc Nephrol. 1995 Jan;5(7):1492–1497. doi: 10.1681/ASN.V571492. [DOI] [PubMed] [Google Scholar]
  36. O'Brien E. R., Bennett K. L., Garvin M. R., Zderic T. W., Hinohara T., Simpson J. B., Kimura T., Nobuyoshi M., Mizgala H., Purchio A. Beta ig-h3, a transforming growth factor-beta-inducible gene, is overexpressed in atherosclerotic and restenotic human vascular lesions. Arterioscler Thromb Vasc Biol. 1996 Apr;16(4):576–584. doi: 10.1161/01.atv.16.4.576. [DOI] [PubMed] [Google Scholar]
  37. Ralph D., McClelland M., Welsh J. RNA fingerprinting using arbitrarily primed PCR identifies differentially regulated RNAs in mink lung (Mv1Lu) cells growth arrested by transforming growth factor beta 1. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10710–10714. doi: 10.1073/pnas.90.22.10710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rasch R. Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment. Albumin excretion. Diabetologia. 1980 May;18(5):413–416. doi: 10.1007/BF00276823. [DOI] [PubMed] [Google Scholar]
  39. Rumble J. R., Doyle A. E., Cooper M. E. Comparison of effects of ACE inhibition with calcium channel blockade on renal disease in a model combining genetic hypertension and diabetes. Am J Hypertens. 1995 Jan;8(1):53–57. doi: 10.1016/0895-7061(94)00165-8. [DOI] [PubMed] [Google Scholar]
  40. Rumble J. R., Komers R., Cooper M. E. Kinins or nitric oxide, or both, are involved in the antitrophic effects of angiotensin converting enzyme inhibitors on diabetes-associated mesenteric vascular hypertrophy in the rat. J Hypertens. 1996 May;14(5):601–607. doi: 10.1097/00004872-199605000-00009. [DOI] [PubMed] [Google Scholar]
  41. SCHMIDT F. H. [Enzymatic determination of glucose and fructose simultaneously]. Klin Wochenschr. 1961 Dec 1;39:1244–1247. doi: 10.1007/BF01506150. [DOI] [PubMed] [Google Scholar]
  42. Sarzani R., Brecher P., Chobanian A. V. Growth factor expression in aorta of normotensive and hypertensive rats. J Clin Invest. 1989 Apr;83(4):1404–1408. doi: 10.1172/JCI114029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmidt A. M., Hasu M., Popov D., Zhang J. H., Chen J., Yan S. D., Brett J., Cao R., Kuwabara K., Costache G. Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8807–8811. doi: 10.1073/pnas.91.19.8807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schmidt A. M., Vianna M., Gerlach M., Brett J., Ryan J., Kao J., Esposito C., Hegarty H., Hurley W., Clauss M. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem. 1992 Jul 25;267(21):14987–14997. [PubMed] [Google Scholar]
  45. Seyer-Hansen K. Renal hypertrophy in experimental diabetes mellitus. Kidney Int. 1983 Apr;23(4):643–646. doi: 10.1038/ki.1983.71. [DOI] [PubMed] [Google Scholar]
  46. Sharma K., Jin Y., Guo J., Ziyadeh F. N. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996 Apr;45(4):522–530. doi: 10.2337/diab.45.4.522. [DOI] [PubMed] [Google Scholar]
  47. Simonsen U., Ehrnrooth E., Gerdes L. U., Faergemann O., Buch J., Andreasen F., Mulvany M. J. Functional properties in vitro of systemic small arteries from rabbits fed a cholesterol-rich diet for 12 weeks. Clin Sci (Lond) 1991 Feb;80(2):119–129. doi: 10.1042/cs0800119. [DOI] [PubMed] [Google Scholar]
  48. Skonier J., Bennett K., Rothwell V., Kosowski S., Plowman G., Wallace P., Edelhoff S., Disteche C., Neubauer M., Marquardt H. beta ig-h3: a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol. 1994 Jun;13(6):571–584. doi: 10.1089/dna.1994.13.571. [DOI] [PubMed] [Google Scholar]
  49. Soulis-Liparota T., Cooper M., Papazoglou D., Clarke B., Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes. 1991 Oct;40(10):1328–1334. doi: 10.2337/diab.40.10.1328. [DOI] [PubMed] [Google Scholar]
  50. Soulis T., Cooper M. E., Vranes D., Bucala R., Jerums G. Effects of aminoguanidine in preventing experimental diabetic nephropathy are related to the duration of treatment. Kidney Int. 1996 Aug;50(2):627–634. doi: 10.1038/ki.1996.358. [DOI] [PubMed] [Google Scholar]
  51. Stouffer G. A., Owens G. K. TGF-beta promotes proliferation of cultured SMC via both PDGF-AA-dependent and PDGF-AA-independent mechanisms. J Clin Invest. 1994 May;93(5):2048–2055. doi: 10.1172/JCI117199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Throckmorton D. C., Brogden A. P., Min B., Rasmussen H., Kashgarian M. PDGF and TGF-beta mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int. 1995 Jul;48(1):111–117. doi: 10.1038/ki.1995.274. [DOI] [PubMed] [Google Scholar]
  53. Tilton R. G., Chang K., Hasan K. S., Smith S. R., Petrash J. M., Misko T. P., Moore W. M., Currie M. G., Corbett J. A., McDaniel M. L. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993 Feb;42(2):221–232. doi: 10.2337/diab.42.2.221. [DOI] [PubMed] [Google Scholar]
  54. Vlassara H., Fuh H., Makita Z., Krungkrai S., Cerami A., Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12043–12047. doi: 10.1073/pnas.89.24.12043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Vranes D., Cooper M. E., Dilley R. J. Angiotensin-converting enzyme inhibition reduces diabetes-induced vascular hypertrophy: morphometric studies. J Vasc Res. 1995 May-Jun;32(3):183–189. doi: 10.1159/000159092. [DOI] [PubMed] [Google Scholar]
  56. Wasty F., Alavi M. Z., Moore S. Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia. 1993 Apr;36(4):316–322. doi: 10.1007/BF00400234. [DOI] [PubMed] [Google Scholar]
  57. Williamson J. R., Tilton R. G., Chang K., Kilo C. Basement membrane abnormalities in diabetes mellitus: relationship to clinical microangiopathy. Diabetes Metab Rev. 1988 Jun;4(4):339–370. doi: 10.1002/dmr.5610040404. [DOI] [PubMed] [Google Scholar]
  58. Wilson E., Sudhir K., Ives H. E. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest. 1995 Nov;96(5):2364–2372. doi: 10.1172/JCI118293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wolf Y. G., Rasmussen L. M., Ruoslahti E. Antibodies against transforming growth factor-beta 1 suppress intimal hyperplasia in a rat model. J Clin Invest. 1994 Mar;93(3):1172–1178. doi: 10.1172/JCI117070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wysocki S. J., Zheng M. H., Fan Y., Lamawansa M. D., House A. K., Norman P. E. Expression of transforming growth factor-beta1 (TGF-beta1) and urokinase-type plasminogen activator (u-PA) genes during arterial repair in the pig. Cardiovasc Res. 1996 Jan;31(1):28–36. [PubMed] [Google Scholar]
  61. Yamamoto T., Nakamura T., Noble N. A., Ruoslahti E., Border W. A. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1814–1818. doi: 10.1073/pnas.90.5.1814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Yang C. W., Vlassara H., Peten E. P., He C. J., Striker G. E., Striker L. J. Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9436–9440. doi: 10.1073/pnas.91.20.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Yokoyama H., Deckert T. Central role of TGF-beta in the pathogenesis of diabetic nephropathy and macrovascular complications: a hypothesis. Diabet Med. 1996 Apr;13(4):313–320. doi: 10.1002/(SICI)1096-9136(199604)13:4<313::AID-DIA56>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  64. Ziyadeh F. N., Sharma K. Role of transforming growth factor-beta in diabetic glomerulosclerosis and renal hypertrophy. Kidney Int Suppl. 1995 Sep;51:S34–S36. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES