Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 1;99(5):1098–1106. doi: 10.1172/JCI119238

Oral tolerization to adenoviral antigens permits long-term gene expression using recombinant adenoviral vectors.

Y Ilan 1, R Prakash 1, A Davidson 1, Jona 1, G Droguett 1, M S Horwitz 1, N R Chowdhury 1, J R Chowdhury 1
PMCID: PMC507919  PMID: 9062369

Abstract

Recombinant adenoviruses (Ads) efficiently transfer foreign genes into hepatocytes in vivo, but the duration of transgene expression is limited by the host immune response which precludes gene expression upon readministration of the virus. To test if this immune response can be abrogated by oral tolerization, we instilled protein extracts of a recombinant adenovirus type-5 via gastroduodenostomy tubes into bilirubin-UDP-glucuronosyltransferase-1 (BUGT1)-deficient jaundiced Gunn rats. Control rats received BSA. Subsequent intravenous injection 5 x 10(9) pfu of a recombinant adenovirus-expressing human BUGT1 (Ad-hBUGT1) resulted in hepatic expression of human BUGT1 (hBUGT1) with reduction of serum bilirubin levels by 70%. After 2 mo serum bilirubin increased gradually. In orally tolerized rats, but not in controls, a second dose of the virus on day 98 markedly reduced serum bilirubin again. In the tolerized rats, the development of antiadenoviral neutralizing antibodies and cytotoxic lymphocytes were markedly inhibited, and transplantation of their splenocytes into naive Gunn rats adoptively transferred the tolerance, indicating a role for regulatory cells. Lymphocytes from the tolerized rats hyperexpressed TGFbeta1, IL2, and IL4 upon exposure to viral antigens, whereas IFNgamma expression became undetectable. Thus, oral tolerization with adenoviral antigens permits long-term gene expression by repeated injections of recombinant adenoviruses.

Full Text

The Full Text of this article is available as a PDF (285.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali M., Lemoine N. R., Ring C. J. The use of DNA viruses as vectors for gene therapy. Gene Ther. 1994 Nov;1(6):367–384. [PubMed] [Google Scholar]
  2. Bett A. J., Prevec L., Graham F. L. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol. 1993 Oct;67(10):5911–5921. doi: 10.1128/jvi.67.10.5911-5921.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bosma P. J., Chowdhury N. R., Goldhoorn B. G., Hofker M. H., Oude Elferink R. P., Jansen P. L., Chowdhury J. R. Sequence of exons and the flanking regions of human bilirubin-UDP-glucuronosyltransferase gene complex and identification of a genetic mutation in a patient with Crigler-Najjar syndrome, type I. Hepatology. 1992 May;15(5):941–947. doi: 10.1002/hep.1840150531. [DOI] [PubMed] [Google Scholar]
  4. Bosma P. J., Seppen J., Goldhoorn B., Bakker C., Oude Elferink R. P., Chowdhury J. R., Chowdhury N. R., Jansen P. L. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J Biol Chem. 1994 Jul 8;269(27):17960–17964. [PubMed] [Google Scholar]
  5. CRIGLER J. F., Jr, NAJJAR V. A. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics. 1952 Aug;10(2):169–180. [PubMed] [Google Scholar]
  6. Chen Y. H., Weiner H. L. Dose-dependent activation and deletion of antigen-specific T cells following oral tolerance. Ann N Y Acad Sci. 1996 Feb 13;778:111–121. doi: 10.1111/j.1749-6632.1996.tb21120.x. [DOI] [PubMed] [Google Scholar]
  7. Chen Y., Inobe J., Weiner H. L. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol. 1995 Jul 15;155(2):910–916. [PubMed] [Google Scholar]
  8. Chen Y., Inobe J., Weiner H. L. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol. 1995 Jul 15;155(2):910–916. [PubMed] [Google Scholar]
  9. Chowdhury J. R., Chowdhury N. R., Wu G., Shouval R., Arias I. M. Bilirubin mono- and diglucuronide formation by human liver in vitro: assay by high-pressure liquid chromatography. Hepatology. 1981 Nov-Dec;1(6):622–627. doi: 10.1002/hep.1840010610. [DOI] [PubMed] [Google Scholar]
  10. Chowdhury J. R., Novikoff P. M., Chowdhury N. R., Novikoff A. B. Distribution of UDPglucuronosyltransferase in rat tissue. Proc Natl Acad Sci U S A. 1985 May;82(9):2990–2994. doi: 10.1073/pnas.82.9.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cotten M., Saltik M., Kursa M., Wagner E., Maass G., Birnstiel M. L. Psoralen treatment of adenovirus particles eliminates virus replication and transcription while maintaining the endosomolytic activity of the virus capsid. Virology. 1994 Nov 15;205(1):254–261. doi: 10.1006/viro.1994.1641. [DOI] [PubMed] [Google Scholar]
  12. Cotten M., Wagner E., Zatloukal K., Phillips S., Curiel D. T., Birnstiel M. L. High-efficiency receptor-mediated delivery of small and large (48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6094–6098. doi: 10.1073/pnas.89.13.6094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dai Y., Schwarz E. M., Gu D., Zhang W. W., Sarvetnick N., Verma I. M. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1401–1405. doi: 10.1073/pnas.92.5.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Engelhardt J. F., Ye X., Doranz B., Wilson J. M. Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6196–6200. doi: 10.1073/pnas.91.13.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fontana A., Constam D. B., Frei K., Malipiero U., Pfister H. W. Modulation of the immune response by transforming growth factor beta. Int Arch Allergy Immunol. 1992;99(1):1–7. doi: 10.1159/000236328. [DOI] [PubMed] [Google Scholar]
  16. Friedman A. Induction of anergy in Th1 lymphocytes by oral tolerance. Importance of antigen dosage and frequency of feeding. Ann N Y Acad Sci. 1996 Feb 13;778:103–110. doi: 10.1111/j.1749-6632.1996.tb21119.x. [DOI] [PubMed] [Google Scholar]
  17. Fujihashi K., Kawabata S., Hiroi T., Yamamoto M., McGhee J. R., Nishikawa S., Kiyono H. Interleukin 2 (IL-2) and interleukin 7 (IL-7) reciprocally induce IL-7 and IL-2 receptors on gamma delta T-cell receptor-positive intraepithelial lymphocytes. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3613–3618. doi: 10.1073/pnas.93.8.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garside P., Steel M., Liew F. Y., Mowat A. M. CD4+ but not CD8+ T cells are required for the induction of oral tolerance. Int Immunol. 1995 Mar;7(3):501–504. doi: 10.1093/intimm/7.3.501. [DOI] [PubMed] [Google Scholar]
  19. Hancock W. W., Polanski M., Zhang J., Blogg N., Weiner H. L. Suppression of insulitis in non-obese diabetic (NOD) mice by oral insulin administration is associated with selective expression of interleukin-4 and -10, transforming growth factor-beta, and prostaglandin-E. Am J Pathol. 1995 Nov;147(5):1193–1199. [PMC free article] [PubMed] [Google Scholar]
  20. Hirahara K., Hisatsune T., Nishijima K., Kato H., Shiho O., Kaminogawa S. CD4+ T cells anergized by high dose feeding establish oral tolerance to antibody responses when transferred in SCID and nude mice. J Immunol. 1995 Jun 15;154(12):6238–6245. [PubMed] [Google Scholar]
  21. Horwitz M. S., Scharff M. D., Maizel J. V., Jr Synthesis and assembly of adenovirus 2. I. Polypeptide synthesis, assembly of capsomeres, and morphogenesis of the virion. Virology. 1969 Dec;39(4):682–694. doi: 10.1016/0042-6822(69)90006-3. [DOI] [PubMed] [Google Scholar]
  22. Husby S., Mestecky J., Moldoveanu Z., Holland S., Elson C. O. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol. 1994 May 1;152(9):4663–4670. [PubMed] [Google Scholar]
  23. Ilan Y., Attavar P., Takahashi M., Davidson A., Horwitz M. S., Guida J., Chowdhury N. R., Chowdhury J. R. Induction of central tolerance by intrathymic inoculation of adenoviral antigens into the host thymus permits long-term gene therapy in Gunn rats. J Clin Invest. 1996 Dec 1;98(11):2640–2647. doi: 10.1172/JCI119085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jaffe H. A., Danel C., Longenecker G., Metzger M., Setoguchi Y., Rosenfeld M. A., Gant T. W., Thorgeirsson S. S., Stratford-Perricaudet L. D., Perricaudet M. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet. 1992 Aug;1(5):372–378. doi: 10.1038/ng0892-372. [DOI] [PubMed] [Google Scholar]
  25. Javed N. H., Gienapp I. E., Cox K. L., Whitacre C. C. Exquisite peptide specificity of oral tolerance in experimental autoimmune encephalomyelitis. J Immunol. 1995 Aug 1;155(3):1599–1605. [PubMed] [Google Scholar]
  26. Khare S. D., Krco C. J., Griffiths M. M., Luthra H. S., David C. S. Oral administration of an immunodominant human collagen peptide modulates collagen-induced arthritis. J Immunol. 1995 Oct 1;155(7):3653–3659. [PubMed] [Google Scholar]
  27. Maizel J. V., Jr, White D. O., Scharff M. D. The polypeptides of adenovirus. II. Soluble proteins, cores, top components and the structure of the virion. Virology. 1968 Sep;36(1):126–136. doi: 10.1016/0042-6822(68)90122-0. [DOI] [PubMed] [Google Scholar]
  28. Miller A., Lider O., Roberts A. B., Sporn M. B., Weiner H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):421–425. doi: 10.1073/pnas.89.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peters W. H., Allebes W. A., Jansen P. L., Poels L. G., Capel P. J. Characterization and tissue specificity of a monoclonal antibody against human uridine 5'-diphosphate-glucuronosyltransferase. Gastroenterology. 1987 Jul;93(1):162–169. doi: 10.1016/0016-5085(87)90329-5. [DOI] [PubMed] [Google Scholar]
  30. Poussier P., Julius M. T-cell development and selection in the intestinal epithelium. Semin Immunol. 1995 Oct;7(5):321–334. doi: 10.1016/1044-5323(95)90013-6. [DOI] [PubMed] [Google Scholar]
  31. Prevec L., Schneider M., Rosenthal K. L., Belbeck L. W., Derbyshire J. B., Graham F. L. Use of human adenovirus-based vectors for antigen expression in animals. J Gen Virol. 1989 Feb;70(Pt 2):429–434. doi: 10.1099/0022-1317-70-2-429. [DOI] [PubMed] [Google Scholar]
  32. Ritter J. K., Crawford J. M., Owens I. S. Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs with expression in COS-1 cells. J Biol Chem. 1991 Jan 15;266(2):1043–1047. [PubMed] [Google Scholar]
  33. Roy Chowdhury J., Roy Chowdhury N., Falany C. N., Tephly T. R., Arias I. M. Isolation and characterization of multiple forms of rat liver UDP-glucuronate glucuronosyltransferase. Biochem J. 1986 Feb 1;233(3):827–837. doi: 10.1042/bj2330827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  35. Taguchi T., Aicher W. K., Fujihashi K., Yamamoto M., McGhee J. R., Bluestone J. A., Kiyono H. Novel function for intestinal intraepithelial lymphocytes. Murine CD3+, gamma/delta TCR+ T cells produce IFN-gamma and IL-5. J Immunol. 1991 Dec 1;147(11):3736–3744. [PubMed] [Google Scholar]
  36. Takahashi M., Ilan Y., Chowdhury N. R., Guida J., Horwitz M., Chowdhury J. R. Long term correction of bilirubin-UDP-glucuronosyltransferase deficiency in Gunn rats by administration of a recombinant adenovirus during the neonatal period. J Biol Chem. 1996 Oct 25;271(43):26536–26542. doi: 10.1074/jbc.271.43.26536. [DOI] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Trotman B. W., Roy-Chowdhury J., Wirt G. D., Bernstein S. E. Azodipyrroles of unconjugated and conjugated bilirubin using diazotized ethyl anthranilate in dimethyl sulfoxide. Anal Biochem. 1982 Mar 15;121(1):175–180. doi: 10.1016/0003-2697(82)90572-3. [DOI] [PubMed] [Google Scholar]
  39. Vandenbark A. A., Vainiene M., Celnik B., Hashim G. A., Buenafe A., Offner H. Definition of encephalitogenic and immunodominant epitopes of guinea pig myelin basic protein (Gp-BP) in Lewis rats tolerized neonatally with Gp-BP or Gp-BP peptides. J Immunol. 1994 Jul 15;153(2):852–861. [PubMed] [Google Scholar]
  40. Wang A. M., Doyle M. V., Mark D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. doi: 10.1073/pnas.86.24.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weiner H. L. Oral tolerance. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10762–10765. doi: 10.1073/pnas.91.23.10762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiner H. L. Oral tolerance: mobilizing the gut. Hosp Pract (1995) 1995 Sep 15;30(9):53–58. doi: 10.1080/21548331.1995.11443258. [DOI] [PubMed] [Google Scholar]
  43. Wilson J. M., Jefferson D. M., Chowdhury J. R., Novikoff P. M., Johnston D. E., Mulligan R. C. Retrovirus-mediated transduction of adult hepatocytes. Proc Natl Acad Sci U S A. 1988 May;85(9):3014–3018. doi: 10.1073/pnas.85.9.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yang Y., Ertl H. C., Wilson J. M. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1994 Aug;1(5):433–442. doi: 10.1016/1074-7613(94)90074-4. [DOI] [PubMed] [Google Scholar]
  45. Yang Y., Li Q., Ertl H. C., Wilson J. M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol. 1995 Apr;69(4):2004–2015. doi: 10.1128/jvi.69.4.2004-2015.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang Y., Nunes F. A., Berencsi K., Gönczöl E., Engelhardt J. F., Wilson J. M. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat Genet. 1994 Jul;7(3):362–369. doi: 10.1038/ng0794-362. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES