Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 1;99(5):1118–1129. doi: 10.1172/JCI119240

The effects of chimeric cells following donor bone marrow infusions as detected by PCR-flow assays in kidney transplant recipients.

R Garcia-Morales 1, M Carreno 1, J Mathew 1, K Zucker 1, R Cirocco 1, G Ciancio 1, G Burke 1, D Roth 1, D Temple 1, A Rosen 1, L Fuller 1, V Esquenazi 1, T Karatzas 1, C Ricordi 1, A Tzakis 1, J Miller 1
PMCID: PMC507921  PMID: 9062371

Abstract

40 recipients of first cadaver kidney transplants were given perioperative donor vertebral bone marrow infusions (DBMC), compared with 100 controls who did not receive donor bone marrow. The immunosuppressive regimen included OKT3, Tacrolimus, and steroid maintenance therapy, and, in some patients, newly introduced mycophenolate mofetil. This report describes the 24-mo actuarial follow-up and several immunological monitoring studies including sequential measurements of donor bone marrow lineage subset chimerism by the recently reported PCR-flow assay. This is a sensitive in situ PCR detection system for donor versus recipient histocompatibility genes as well as cell surface CD epitope markers using flow cytometry. The results indicate (a) the stabilization of the donor CD3+ and CD34+ cells in recipient peripheral blood at levels below 1% between 6 mo and 1 yr postoperatively, with a 10-fold higher level of donor cell chimerism of these lineages in recipient iliac crest marrow; (b) significantly lower levels of chimerism in peripheral blood up to 6 mo postoperatively in patients who had early acute (reversible) rejection episodes compared with those who did not; (c) a higher degree of chimerism seen in patients who were class II MHC HLA DR identical with their donors; (d) the identification of a high proportion of the donor bone marrow derived CD3 dimly staining subset of T cells (to which regulatory functions have been ascribed) in recipient peripheral blood and especially in recipient bone marrow; and (e) an unexpectedly increased susceptibility to clinically significant infections (primarily viral), and even death in the DBMC-infused group, compared with controls, but no graft losses because of rejection in the DBMC-infused group. Mixed lymphocyte culture assays showed a trend toward a greater number of nonspecifically low reactors in the DBMC group, as well as a greater number of nonspecifically high reactors in the controls (P = 0.058). The autologous mixed lymphocyte reaction also indicated a trend towards nonspecific immune activation in the DBMC group. Finally, anti-cytomegaloviral IgG antibody reactivity was significantly inhibited in the DBMC group 4-6 mo postoperatively (P = < 0.05). In the controls, there were no donor cell lineages detected by PCR-flow in the peripheral blood. These rather unexpected findings, indicating a more depressed cellular and humoral immune capacity in the DBMC cadaver kidney transplant recipients in this relatively early follow-up period, are discussed relevant to chimerism, MHC restriction, and suppressor activity brought about by specialized DBMC subsets, which still need to be defined.

Full Text

The Full Text of this article is available as a PDF (249.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayoub G., Terasaki P. HLA-DR matching in multicenter, single-typing laboratory data. Transplantation. 1982 May;33(5):515–517. doi: 10.1097/00007890-198205000-00010. [DOI] [PubMed] [Google Scholar]
  2. BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Actively acquired tolerance of foreign cells. Nature. 1953 Oct 3;172(4379):603–606. doi: 10.1038/172603a0. [DOI] [PubMed] [Google Scholar]
  3. BLAESE R. M., MARTINEZ C., GOOD R. A. IMMUNOLOGIC INCOMPETENCE OF IMMUNOLOGICALLY RUNTED ANIMALS. J Exp Med. 1964 Feb 1;119:211–224. doi: 10.1084/jem.119.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barber W. H., Mankin J. A., Laskow D. A., Deierhoi M. H., Julian B. A., Curtis J. J., Diethelm A. G. Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation. 1991 Jan;51(1):70–75. doi: 10.1097/00007890-199101000-00011. [DOI] [PubMed] [Google Scholar]
  5. Bluestone J. A., Leo O., Epstein S. L., Sachs D. H. Idiotypic manipulation of the immune response to transplantation antigens. Immunol Rev. 1986 Apr;90:5–27. doi: 10.1111/j.1600-065x.1986.tb01475.x. [DOI] [PubMed] [Google Scholar]
  6. Carreno M., Fuller L., Zucker K., Yang W. C., Burke G., Nery J., Gomez C., Esquenazi V., Miller J. Cross-species reactivity of the anti-idiotype anti-OKT3 cascade between mice and humans. Hum Immunol. 1992 Apr;33(4):249–258. doi: 10.1016/0198-8859(92)90332-h. [DOI] [PubMed] [Google Scholar]
  7. Carreno M., Yang W. C., Esquenazi V., Fuller L., Burke G., Milgrom M., Roth D., Ranjan D., Miller J. OKT3 induction via idiotypic networks of mirror-image immunosuppressive antiimmunoglobulins in renal transplant recipients. Transplantation. 1990 Feb;49(2):408–415. doi: 10.1097/00007890-199002000-00036. [DOI] [PubMed] [Google Scholar]
  8. Ciancio G., Carreno M., Mathew J., Ricordi C., Garcia R., Karatzas T., Fuller L., Cirocco R., Burke G., Webb M. Human donor bone marrow cells can enhance hyporeactivity in renal transplantation using maintenance FK 506 and OKT3 induction therapy. Transplant Proc. 1996 Apr;28(2):943–944. [PubMed] [Google Scholar]
  9. Cobbold S. P., Martin G., Qin S., Waldmann H. Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature. 1986 Sep 11;323(6084):164–166. doi: 10.1038/323164a0. [DOI] [PubMed] [Google Scholar]
  10. Fontes P., Rao A. S., Demetris A. J., Zeevi A., Trucco M., Carroll P., Rybka W., Rudert W. A., Ricordi C., Dodson F. Bone marrow augmentation of donor-cell chimerism in kidney, liver, heart, and pancreas islet transplantation. Lancet. 1994 Jul 16;344(8916):151–155. doi: 10.1016/s0140-6736(94)92756-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. French M. E., Batchelor J. R. Enhancement of renal allografts in rats and man. Transplant Rev. 1972;13:115–141. doi: 10.1111/j.1600-065x.1972.tb00062.x. [DOI] [PubMed] [Google Scholar]
  12. Fuller L., Flaa C., Jaffe D., Strauss J., Kyriakides G. K., Miller J. Factors affecting the autologous mixed lymphocyte reaction in kidney transplantation. J Clin Invest. 1983 May;71(5):1322–1330. doi: 10.1172/JCI110883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fuller L., Kyriakides G., Flaa C., Esquenazi V., Miller J. In vitro generation of human mixed lymphocyte culture suppressor cells. I. Cellular characterization and specificity. Transplantation. 1980;29(1):54–60. doi: 10.1097/00007890-198001000-00012. [DOI] [PubMed] [Google Scholar]
  14. Hisanaga M., Hundrieser J., Böker K., Uthoff K., Raddatz G., Wahlers T., Wonigeit K., Pichlmayr R., Schlitt H. J. Development, stability, and clinical correlations of allogeneic microchimerism after solid organ transplantation. Transplantation. 1996 Jan 15;61(1):40–45. doi: 10.1097/00007890-199601150-00010. [DOI] [PubMed] [Google Scholar]
  15. Kikly K., Dennert G. Evidence for extrathymic development of TNK cells. NK1+ CD3+ cells responsible for acute marrow graft rejection are present in thymus-deficient mice. J Immunol. 1992 Jul 15;149(2):403–412. [PubMed] [Google Scholar]
  16. Lafferty K. J., Bootes A., Dart G., Talmage D. W. Effect of organ culture on the survival of thyroid allografts in mice. Transplantation. 1976 Aug;22(2):138–149. doi: 10.1097/00007890-197608000-00009. [DOI] [PubMed] [Google Scholar]
  17. Larsen C. P., Morris P. J., Austyn J. M. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med. 1990 Jan 1;171(1):307–314. doi: 10.1084/jem.171.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacDonald H. R. NK1.1+ T cell receptor-alpha/beta+ cells: new clues to their origin, specificity, and function. J Exp Med. 1995 Sep 1;182(3):633–638. doi: 10.1084/jem.182.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morris P. J., Ting A. Studies of HLA-DR with relevance to renal transplantation. Immunol Rev. 1982;66:103–131. doi: 10.1111/j.1600-065x.1982.tb00436.x. [DOI] [PubMed] [Google Scholar]
  20. Muraoka S., Miller R. G. Cells in bone marrow and in T cell colonies grown from bone marrow can suppress generation of cytotoxic T lymphocytes directed against their self antigens. J Exp Med. 1980 Jul 1;152(1):54–71. doi: 10.1084/jem.152.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Owen R. D. IMMUNOGENETIC CONSEQUENCES OF VASCULAR ANASTOMOSES BETWEEN BOVINE TWINS. Science. 1945 Oct 19;102(2651):400–401. doi: 10.1126/science.102.2651.400. [DOI] [PubMed] [Google Scholar]
  22. Palathumpat V., Dejbakhsh-Jones S., Holm B., Wang H., Liang O., Strober S. Studies of CD4- CD8- alpha beta bone marrow T cells with suppressor activity. J Immunol. 1992 Jan 15;148(2):373–380. [PubMed] [Google Scholar]
  23. Pescovitz M. D., Thistlethwaite J. R., Jr, Auchincloss H., Jr, Ildstad S. T., Sharp T. G., Terrill R., Sachs D. H. Effect of class II antigen matching on renal allograft survival in miniature swine. J Exp Med. 1984 Nov 1;160(5):1495–1508. doi: 10.1084/jem.160.5.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poncelet P., Carayon P. Cytofluorometric quantification of cell-surface antigens by indirect immunofluorescence using monoclonal antibodies. J Immunol Methods. 1985 Dec 17;85(1):65–74. doi: 10.1016/0022-1759(85)90274-1. [DOI] [PubMed] [Google Scholar]
  25. Rao A. S., Fontes P., Zeevi A., Trucco M., Dodson F. S., Rybka W. B., Shapiro R., Jordan M., Pham S. M., Rilo H. L. Augmentation of chimerism in whole organ recipients by simultaneous infusion of donor bone marrow cells. Transplant Proc. 1995 Feb;27(1):210–212. [PMC free article] [PubMed] [Google Scholar]
  26. Reinsmoen N. L., McSherry C., Jackson A. J., Hertz M. I., Bolman R. M., Matas A. J. Circulating donor antigen and response to donor antigen as predictors of long-term lung and kidney transplant success. Transplant Proc. 1995 Feb;27(1):205–206. [PubMed] [Google Scholar]
  27. Ricordi C., Karatzas T., Selvaggi G., Neri J., Fernandez H., Ruiz M. P., Linetsky E., Kong S. S., Webb M., Bottino R. Enhanced allograft acceptance by multiple infusions of donor bone marrow in humans. Transplant Proc. 1995 Dec;27(6):3381–3381. [PubMed] [Google Scholar]
  28. Ricordi C., Karatzas T., Selvaggi G., Nery J., Webb M., Fernandez H., Ruiz P., Kong S. S., Esquenazi V., Miller J. Multiple bone marrow infusions to enhance acceptance of allografts from the same donor. Ann N Y Acad Sci. 1995 Dec 29;770:345–350. doi: 10.1111/j.1749-6632.1995.tb31066.x. [DOI] [PubMed] [Google Scholar]
  29. Shirwan H., Wang H. K., Barwari L., Makowka L., Cramer D. V. Pretransplant injection of allograft recipients with donor blood or lymphocytes permits allograft tolerance without the presence of persistent donor microchimerism. Transplantation. 1996 May 15;61(9):1382–1386. doi: 10.1097/00007890-199605150-00017. [DOI] [PubMed] [Google Scholar]
  30. Starzl T. E., Demetris A. J., Murase N., Thomson A. W., Trucco M., Ricordi C. Donor cell chimerism permitted by immunosuppressive drugs: a new view of organ transplantation. Immunol Today. 1993 Jun;14(6):326–332. doi: 10.1016/0167-5699(93)90054-o. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Starzl T. E., Demetris A. J., Trucco M., Murase N., Ricordi C., Ildstad S., Ramos H., Todo S., Tzakis A., Fung J. J. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology. 1993 Jun;17(6):1127–1152. [PMC free article] [PubMed] [Google Scholar]
  32. Starzl T. E., Demetris A. J., Trucco M., Zeevi A., Ramos H., Terasaki P., Rudert W. A., Kocova M., Ricordi C., Ildstad S. Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation. 1993 Jun;55(6):1272–1277. doi: 10.1097/00007890-199306000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sugiura K., Ikehara S., Inaba M., Haraguchi S., Ogata H., Sardiña E. E., Sugawara M., Ohta Y., Good R. A. Enrichment of murine bone marrow natural suppressor activity in the fraction of hematopoietic progenitors with interleukin 3 receptor-associated antigen. Exp Hematol. 1992 Feb;20(2):256–263. [PubMed] [Google Scholar]
  34. Thomas J. M., Carver F. M., Cunningham P. R., Olson L. C., Thomas F. T. Kidney allograft tolerance in primates without chronic immunosuppression--the role of veto cells. Transplantation. 1991 Jan;51(1):198–207. doi: 10.1097/00007890-199101000-00032. [DOI] [PubMed] [Google Scholar]
  35. Thomas J. M., Carver F. M., Kasten-Jolly J., Haisch C. E., Rebellato L. M., Gross U., Vore S. J., Thomas F. T. Further studies of veto activity in rhesus monkey bone marrow in relation to allograft tolerance and chimerism. Transplantation. 1994 Jan;57(1):101–115. doi: 10.1097/00007890-199401000-00018. [DOI] [PubMed] [Google Scholar]
  36. Vicari A. P., Zlotnik A. Mouse NK1.1+ T cells: a new family of T cells. Immunol Today. 1996 Feb;17(2):71–76. doi: 10.1016/0167-5699(96)80582-2. [DOI] [PubMed] [Google Scholar]
  37. Yang W. C., Carreno M., Esquenazi V., Fuller L., Ranjan D., Burke G., Roth D., Miller J. Evidence that antibodies to cytomegalovirus and the T cell receptor (TCR)/CD3 complex may have common ligands. Transplantation. 1991 Feb;51(2):490–498. doi: 10.1097/00007890-199102000-00042. [DOI] [PubMed] [Google Scholar]
  38. Zeevi A., Pavlick M., Lombardozzi S., Banas R., Pappo O., Rao A. S., Fontes P., Demetris J., Shapiro R., Dodson F. Immune status of recipients following bone marrow-augmented solid organ transplantation. Transplantation. 1995 Feb 27;59(4):616–620. doi: 10.1097/00007890-199502270-00030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zucker K., Roth D., Cirocco R., Mathew J., Carreno M., Fuller L., Karatzas T., Jin Y., Burke G., Nery J. Transplant-associated autoimmune mechanisms in human hepatitis C virus infection. J Clin Immunol. 1996 Jan;16(1):60–70. doi: 10.1007/BF01540974. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES