Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 15;99(6):1187–1199. doi: 10.1172/JCI119275

Glucose effectiveness assessed under dynamic and steady state conditions. Comparability of uptake versus production components.

M Ader 1, T C Ni 1, R N Bergman 1
PMCID: PMC507932  PMID: 9077526

Abstract

Glucose tolerance is determined by both insulin action and insulin-independent effects, or "glucose effectiveness," which includes glucose-mediated stimulation of glucose uptake (Rd) and suppression of hepatic glucose output (HGO). Despite its importance to tolerance, controversy surrounds accurate assessment of glucose effectiveness. Furthermore, the relative contributions of glucose's actions on Rd and HGO under steady state and dynamic conditions are unclear. We performed hyperglycemic clamps and intravenous glucose tolerance tests in eight normal dogs, and assessed glucose effectiveness by two independent methods. During clamps, glucose was raised to three successive 90-min hyperglycemic plateaus by variable labeled glucose infusion rate; glucose effectiveness (GE) was quantified as the slope of the dose-response relationship between steady state glucose and glucose infusion rate (GE[CLAMP(total)]), Rd (GE[CLAMP(uptake)]) or HGO (GE[CLAMP(HGO)]). During intravenous glucose tolerance tests, tritiated glucose (1.2 microCi/kg) was injected with cold glucose (0.3 g/kg); glucose and tracer dynamics were analyzed using a two-compartment model of glucose kinetics to obtain Rd and HGO components of glucose effectiveness. All experiments were performed during somatostatin inhibition of islet secretion, and basal insulin and glucagon replacement. During clamps, Rd rose from basal (2.54+/-0.20) to 3.95+/-0.54, 6.76+/-1.21, and 9.48+/-1.27 mg/min per kg during stepwise hyperglycemia; conversely, HGO declined to 2.06+/-0.17, 1.17+/-0.19, and 0.52+/-0.33 mg/min per kg. Clamp-based glucose effectiveness was 0.0451+/-0.0061, 0.0337+/-0.0060, and 0.0102+/-0.0009 dl/min per kg for GE[CLAMP(total)], GE[CLAMP(uptake)], and GE[CLAMP(HGO)], respectively. Glucose's action on Rd dominated overall glucose effectiveness (72.2+/-3.3% of total), a result virtually identical to that obtained during intravenous glucose tolerance tests (71.6+/-6.1% of total). Both methods yielded similar estimates of glucose effectiveness. These results provide strong support that glucose effectiveness can be reliably estimated, and that glucose-stimulated Rd is the dominant component during both steady state and dynamic conditions.

Full Text

The Full Text of this article is available as a PDF (269.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ader M., Bergman R. N. Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am J Physiol. 1990 Jun;258(6 Pt 1):E1020–E1032. doi: 10.1152/ajpendo.1990.258.6.E1020. [DOI] [PubMed] [Google Scholar]
  2. Ader M., Pacini G., Yang Y. J., Bergman R. N. Importance of glucose per se to intravenous glucose tolerance. Comparison of the minimal-model prediction with direct measurements. Diabetes. 1985 Nov;34(11):1092–1103. doi: 10.2337/diab.34.11.1092. [DOI] [PubMed] [Google Scholar]
  3. Alzaid A. A., Dinneen S. F., Turk D. J., Caumo A., Cobelli C., Rizza R. A. Assessment of insulin action and glucose effectiveness in diabetic and nondiabetic humans. J Clin Invest. 1994 Dec;94(6):2341–2348. doi: 10.1172/JCI117599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andersen L., Dinesen B., Jørgensen P. N., Poulsen F., Røder M. E. Enzyme immunoassay for intact human insulin in serum or plasma. Clin Chem. 1993 Apr;39(4):578–582. [PubMed] [Google Scholar]
  5. Atkins G. L. A new technique for maintaining and monitoring conscious, stress-free rabbits in a steady state: its use in the determination of glucose kinetics. Q J Exp Physiol Cogn Med Sci. 1980 Jan;65(1):63–75. doi: 10.1113/expphysiol.1980.sp002492. [DOI] [PubMed] [Google Scholar]
  6. Avogaro A., Bristow J. D., Bier D. M., Cobelli C., Toffolo G. Stable-label intravenous glucose tolerance test minimal model. Diabetes. 1989 Aug;38(8):1048–1055. doi: 10.2337/diab.38.8.1048. [DOI] [PubMed] [Google Scholar]
  7. Baron A. D., Brechtel G., Wallace P., Edelman S. V. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Physiol. 1988 Dec;255(6 Pt 1):E769–E774. doi: 10.1152/ajpendo.1988.255.6.E769. [DOI] [PubMed] [Google Scholar]
  8. Baron A. D., Kolterman O. G., Bell J., Mandarino L. J., Olefsky J. M. Rates of noninsulin-mediated glucose uptake are elevated in type II diabetic subjects. J Clin Invest. 1985 Nov;76(5):1782–1788. doi: 10.1172/JCI112169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bergman R. N., Finegood D. T., Ader M. Assessment of insulin sensitivity in vivo. Endocr Rev. 1985 Winter;6(1):45–86. doi: 10.1210/edrv-6-1-45. [DOI] [PubMed] [Google Scholar]
  10. Bergman R. N., Ider Y. Z., Bowden C. R., Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol. 1979 Jun;236(6):E667–E677. doi: 10.1152/ajpendo.1979.236.6.E667. [DOI] [PubMed] [Google Scholar]
  11. Bergman R. N. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes. 1989 Dec;38(12):1512–1527. doi: 10.2337/diab.38.12.1512. [DOI] [PubMed] [Google Scholar]
  12. Best J. D., Taborsky G. J., Jr, Halter J. B., Porte D., Jr Glucose disposal is not proportional to plasma glucose level in man. Diabetes. 1981 Oct;30(10):847–850. doi: 10.2337/diab.30.10.847. [DOI] [PubMed] [Google Scholar]
  13. Bonadonna R. C., Del Prato S., Saccomani M. P., Bonora E., Gulli G., Ferrannini E., Bier D., Cobelli C., DeFronzo R. A. Transmembrane glucose transport in skeletal muscle of patients with non-insulin-dependent diabetes. J Clin Invest. 1993 Jul;92(1):486–494. doi: 10.1172/JCI116592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bradley D. C., Poulin R. A., Bergman R. N. Dynamics of hepatic and peripheral insulin effects suggest common rate-limiting step in vivo. Diabetes. 1993 Feb;42(2):296–306. doi: 10.2337/diab.42.2.296. [DOI] [PubMed] [Google Scholar]
  15. Caumo A., Cobelli C. Hepatic glucose production during the labeled IVGTT: estimation by deconvolution with a new minimal model. Am J Physiol. 1993 May;264(5 Pt 1):E829–E841. doi: 10.1152/ajpendo.1993.264.5.E829. [DOI] [PubMed] [Google Scholar]
  16. Caumo A., Giacca A., Morgese M., Pozza G., Micossi P., Cobelli C. Minimal models of glucose disappearance: lessons from the labelled IVGTT. Diabet Med. 1991 Nov;8(9):822–832. doi: 10.1111/j.1464-5491.1991.tb02120.x. [DOI] [PubMed] [Google Scholar]
  17. Christopher M. J., Rantzau C., Ward G. M., Alford F. P. Insulinopenia and hyperglycemia influence the in vivo partitioning of GE and SI. Am J Physiol. 1995 Mar;268(3 Pt 1):E410–E421. doi: 10.1152/ajpendo.1995.268.3.E410. [DOI] [PubMed] [Google Scholar]
  18. Cobelli C., Pacini G., Toffolo G., Saccà L. Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT. Am J Physiol. 1986 May;250(5 Pt 1):E591–E598. doi: 10.1152/ajpendo.1986.250.5.E591. [DOI] [PubMed] [Google Scholar]
  19. Edelman S. V., Laakso M., Wallace P., Brechtel G., Olefsky J. M., Baron A. D. Kinetics of insulin-mediated and non-insulin-mediated glucose uptake in humans. Diabetes. 1990 Aug;39(8):955–964. doi: 10.2337/diab.39.8.955. [DOI] [PubMed] [Google Scholar]
  20. Farrace S., Rossetti L. Hyperglycemia markedly enhances skeletal muscle glycogen synthase activity in diabetic, but not in normal conscious rats. Diabetes. 1992 Nov;41(11):1453–1463. doi: 10.2337/diab.41.11.1453. [DOI] [PubMed] [Google Scholar]
  21. Finegood D. T., Tzur D. Reduced glucose effectiveness associated with reduced insulin release: an artifact of the minimal-model method. Am J Physiol. 1996 Sep;271(3 Pt 1):E485–E495. doi: 10.1152/ajpendo.1996.271.3.E485. [DOI] [PubMed] [Google Scholar]
  22. Galante P., Mosthaf L., Kellerer M., Berti L., Tippmer S., Bossenmaier B., Fujiwara T., Okuno A., Horikoshi H., Häring H. U. Acute hyperglycemia provides an insulin-independent inducer for GLUT4 translocation in C2C12 myotubes and rat skeletal muscle. Diabetes. 1995 Jun;44(6):646–651. doi: 10.2337/diab.44.6.646. [DOI] [PubMed] [Google Scholar]
  23. Gottesman I., Mandarino L., Gerich J. Estimation and kinetic analysis of insulin-independent glucose uptake in human subjects. Am J Physiol. 1983 Jun;244(6):E632–E635. doi: 10.1152/ajpendo.1983.244.6.E632. [DOI] [PubMed] [Google Scholar]
  24. Hendrick G. K., Frizzell R. T., Cherrington A. D. Effect of somatostatin on nonesterified fatty acid levels modifies glucose homeostasis during fasting. Am J Physiol. 1987 Oct;253(4 Pt 1):E443–E452. doi: 10.1152/ajpendo.1987.253.4.E443. [DOI] [PubMed] [Google Scholar]
  25. Henriksen J. E., Alford F., Handberg A., Vaag A., Ward G. M., Kalfas A., Beck-Nielsen H. Increased glucose effectiveness in normoglycemic but insulin-resistant relatives of patients with non-insulin-dependent diabetes mellitus. A novel compensatory mechanism. J Clin Invest. 1994 Sep;94(3):1196–1204. doi: 10.1172/JCI117436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hobbs C. J., Jones R. E., Plymate S. R. Nandrolone, a 19-nortestosterone, enhances insulin-independent glucose uptake in normal men. J Clin Endocrinol Metab. 1996 Apr;81(4):1582–1585. doi: 10.1210/jcem.81.4.8636371. [DOI] [PubMed] [Google Scholar]
  27. Insel P. A., Liljenquist J. E., Tobin J. D., Sherwin R. S., Watkins P., Andres R., Berman M. Insulin control of glucose metabolism in man: a new kinetic analysis. J Clin Invest. 1975 May;55(5):1057–1066. doi: 10.1172/JCI108006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jacquez J. A. Theory of production rate calculations in steady and non-steady states and its application to glucose metabolism. Am J Physiol. 1992 Jun;262(6 Pt 1):E779–E790. doi: 10.1152/ajpendo.1992.262.6.E779. [DOI] [PubMed] [Google Scholar]
  29. Kahn S. E., Prigeon R. L., McCulloch D. K., Boyko E. J., Bergman R. N., Schwartz M. W., Neifing J. L., Ward W. K., Beard J. C., Palmer J. P. The contribution of insulin-dependent and insulin-independent glucose uptake to intravenous glucose tolerance in healthy human subjects. Diabetes. 1994 Apr;43(4):587–592. doi: 10.2337/diab.43.4.587. [DOI] [PubMed] [Google Scholar]
  30. Katz J., Dunn A., Chenoweth M., Golden S. Determination of synthesis, recycling and body mass of glucose in rats and rabbits in vivo 3H-and 14C-labelled glucose. Biochem J. 1974 Jul;142(1):171–183. doi: 10.1042/bj1420171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kruszynska Y. T., Home P. D., Alberti K. G. In vivo regulation of liver and skeletal muscle glycogen synthase activity by glucose and insulin. Diabetes. 1986 Jun;35(6):662–667. doi: 10.2337/diab.35.6.662. [DOI] [PubMed] [Google Scholar]
  32. Lund-Andersen H. Transport of glucose from blood to brain. Physiol Rev. 1979 Apr;59(2):305–352. doi: 10.1152/physrev.1979.59.2.305. [DOI] [PubMed] [Google Scholar]
  33. Martin B. C., Warram J. H., Krolewski A. S., Bergman R. N., Soeldner J. S., Kahn C. R. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet. 1992 Oct 17;340(8825):925–929. doi: 10.1016/0140-6736(92)92814-v. [DOI] [PubMed] [Google Scholar]
  34. Osei K., Schuster D. P. Metabolic characteristics of African descendants: a comparative study of African-Americans and Ghanaian immigrants using minimal model analysis. Diabetologia. 1995 Sep;38(9):1103–1109. doi: 10.1007/BF00402182. [DOI] [PubMed] [Google Scholar]
  35. Porte D., Jr Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes. 1991 Feb;40(2):166–180. doi: 10.2337/diab.40.2.166. [DOI] [PubMed] [Google Scholar]
  36. Quon M. J., Cochran C., Taylor S. I., Eastman R. C. Non-insulin-mediated glucose disappearance in subjects with IDDM. Discordance between experimental results and minimal model analysis. Diabetes. 1994 Jul;43(7):890–896. doi: 10.2337/diab.43.7.890. [DOI] [PubMed] [Google Scholar]
  37. Radziuk J., Norwich K. H., Vranic M. Experimental validation of measurements of glucose turnover in nonsteady state. Am J Physiol. 1978 Jan;234(1):E84–E93. doi: 10.1152/ajpendo.1978.234.1.E84. [DOI] [PubMed] [Google Scholar]
  38. Raman M., Radziuk J., Hetenyi G., Jr Distribution and kinetics of glucose in rats analyzed by noncompartmental and compartmental analysis. Am J Physiol. 1990 Aug;259(2 Pt 1):E292–E303. doi: 10.1152/ajpendo.1990.259.2.E292. [DOI] [PubMed] [Google Scholar]
  39. Rebrin K., Steil G. M., Getty L., Bergman R. N. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes. 1995 Sep;44(9):1038–1045. doi: 10.2337/diab.44.9.1038. [DOI] [PubMed] [Google Scholar]
  40. Steil G. M., Murray J., Bergman R. N., Buchanan T. A. Repeatability of insulin sensitivity and glucose effectiveness from the minimal model. Implications for study design. Diabetes. 1994 Nov;43(11):1365–1371. doi: 10.2337/diab.43.11.1365. [DOI] [PubMed] [Google Scholar]
  41. Verdonk C. A., Rizza R. A., Gerich J. E. Effects of plasma glucose concentration on glucose utilization and glucose clearance in normal man. Diabetes. 1981 Jun;30(6):535–537. doi: 10.2337/diab.30.6.535. [DOI] [PubMed] [Google Scholar]
  42. Vranic M., Fono P., Kovacevic N., Lin B. J. Glucose kinetics and fatty acids in dogs on matched insulin infusion after glucose load. Metabolism. 1971 Oct;20(10):954–967. doi: 10.1016/0026-0495(71)90016-3. [DOI] [PubMed] [Google Scholar]
  43. Watanabe R. M., Lovejoy J., Steil G. M., DiGirolamo M., Bergman R. N. Insulin sensitivity accounts for glucose and lactate kinetics after intravenous glucose injection. Diabetes. 1995 Aug;44(8):954–962. doi: 10.2337/diab.44.8.954. [DOI] [PubMed] [Google Scholar]
  44. Welch S., Gebhart S. S., Bergman R. N., Phillips L. S. Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects. J Clin Endocrinol Metab. 1990 Dec;71(6):1508–1518. doi: 10.1210/jcem-71-6-1508. [DOI] [PubMed] [Google Scholar]
  45. Yang Y. J., Youn J. H., Bergman R. N. Modified protocols improve insulin sensitivity estimation using the minimal model. Am J Physiol. 1987 Dec;253(6 Pt 1):E595–E602. doi: 10.1152/ajpendo.1987.253.6.E595. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES