Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 15;99(6):1200–1209. doi: 10.1172/JCI119276

Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice.

L Beck 1, Y Soumounou 1, J Martel 1, G Krishnamurthy 1, C Gauthier 1, C G Goodyer 1, H S Tenenhouse 1
PMCID: PMC507933  PMID: 9077527

Abstract

PEX, a phosphate-regulating gene with homology to endopeptidases on the X chromosome, was recently identified as the candidate gene for X-linked hypophosphatemia. In the present study, we cloned mouse and human Pex/PEX cDNAs encoding part of the 5' untranslated region, the protein coding region, and the entire 3' untranslated region, determined the tissue distribution of Pex/PEX mRNA, and characterized the Pex mutation in the murine Hyp homologue of the human disease. Using the reverse transcriptase/polymerase chain reaction (RT/PCR) and ribonuclease protection assays, we found that Pex/PEX mRNA is expressed predominantly in human fetal and adult mouse calvaria and long bone. With RNA from Hyp mouse bone, an RT/PCR product was generated with 5' but not 3' Pex primer pairs and a protected Pex mRNA fragment was detected with 5' but not 3' Pex riboprobes by ribonuclease protection assay. Analysis of the RT/PCR product derived from Hyp bone RNA revealed an aberrant Pex transcript with retention of intron sequence downstream from nucleotide 1302 of the Pex cDNA. Pex mRNA was not detected on Northern blots of poly (A)+ RNA from Hyp bone, while a low-abundance Pex transcript of approximately 7 kb was apparent in normal bone. Southern analysis of genomic DNA from Hyp mice revealed the absence of hybridizing bands with cDNA probes from the 3' region of the Pex cDNA. We conclude that Pex/PEX is a low-abundance transcript that is expressed predominantly in bone of mice and humans and that a large deletion in the 3' region of the Pex gene is present in the murine Hyp homologue of X-linked hypophosphatemia.

Full Text

The Full Text of this article is available as a PDF (916.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cai Q., Hodgson S. F., Kao P. C., Lennon V. A., Klee G. G., Zinsmiester A. R., Kumar R. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N Engl J Med. 1994 Jun 9;330(23):1645–1649. doi: 10.1056/NEJM199406093302304. [DOI] [PubMed] [Google Scholar]
  2. D'Adamio L., Shipp M. A., Masteller E. L., Reinherz E. L. Organization of the gene encoding common acute lymphoblastic leukemia antigen (neutral endopeptidase 24.11): multiple miniexons and separate 5' untranslated regions. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7103–7107. doi: 10.1073/pnas.86.18.7103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Du L., Desbarats M., Viel J., Glorieux F. H., Cawthorn C., Ecarot B. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics. 1996 Aug 15;36(1):22–28. doi: 10.1006/geno.1996.0421. [DOI] [PubMed] [Google Scholar]
  4. Ecarot-Charrier B., Glorieux F. H., Travers R., Desbarats M., Bouchard F., Hinek A. Defective bone formation by transplanted Hyp mouse bone cells into normal mice. Endocrinology. 1988 Aug;123(2):768–773. doi: 10.1210/endo-123-2-768. [DOI] [PubMed] [Google Scholar]
  5. Ecarot B., Glorieux F. H., Desbarats M., Travers R., Labelle L. Defective bone formation by Hyp mouse bone cells transplanted into normal mice: evidence in favor of an intrinsic osteoblast defect. J Bone Miner Res. 1992 Feb;7(2):215–220. doi: 10.1002/jbmr.5650070213. [DOI] [PubMed] [Google Scholar]
  6. Ecarot B., Glorieux F. H., Desbarats M., Travers R., Labelle L. Effect of dietary phosphate deprivation and supplementation of recipient mice on bone formation by transplanted cells from normal and X-linked hypophosphatemic mice. J Bone Miner Res. 1992 May;7(5):523–530. doi: 10.1002/jbmr.5650070508. [DOI] [PubMed] [Google Scholar]
  7. Econs M. J., Drezner M. K. Tumor-induced osteomalacia--unveiling a new hormone. N Engl J Med. 1994 Jun 9;330(23):1679–1681. doi: 10.1056/NEJM199406093302310. [DOI] [PubMed] [Google Scholar]
  8. Eicher E. M., Southard J. L., Scriver C. R., Glorieux F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4667–4671. doi: 10.1073/pnas.73.12.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartmann C. M., Hewson A. S., Kos C. H., Hilfiker H., Soumounou Y., Murer H., Tenenhouse H. S. Structure of murine and human renal type II Na+-phosphate cotransporter genes (Npt2 and NPT2). Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7409–7414. doi: 10.1073/pnas.93.14.7409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hou S. M. Novel types of mutation identified at the hprt locus of human T-lymphocytes. Mutat Res. 1994 Jul 1;308(1):23–31. doi: 10.1016/0027-5107(94)90195-3. [DOI] [PubMed] [Google Scholar]
  11. Hruska K. A., Rifas L., Cheng S. L., Gupta A., Halstead L., Avioli L. X-linked hypophosphatemic rickets and the murine Hyp homologue. Am J Physiol. 1995 Mar;268(3 Pt 2):F357–F362. doi: 10.1152/ajprenal.1995.268.3.F357. [DOI] [PubMed] [Google Scholar]
  12. Kos C. H., Tihy F., Econs M. J., Murer H., Lemieux N., Tenenhouse H. S. Localization of a renal sodium-phosphate cotransporter gene to human chromosome 5q35. Genomics. 1994 Jan 1;19(1):176–177. doi: 10.1006/geno.1994.1034. [DOI] [PubMed] [Google Scholar]
  13. Labuda M., Lemieux N., Tihy F., Prinster C., Glorieux F. H. Human 25-hydroxyvitamin D 24-hydroxylase cytochrome P450 subunit maps to a different chromosomal location than that of pseudovitamin D-deficient rickets. J Bone Miner Res. 1993 Nov;8(11):1397–1406. doi: 10.1002/jbmr.5650081114. [DOI] [PubMed] [Google Scholar]
  14. Meyer R. A., Jr, Tenenhouse H. S., Meyer M. H., Klugerman A. H. The renal phosphate transport defect in normal mice parabiosed to X-linked hypophosphatemic mice persists after parathyroidectomy. J Bone Miner Res. 1989 Aug;4(4):523–532. doi: 10.1002/jbmr.5650040411. [DOI] [PubMed] [Google Scholar]
  15. Morrone A., Morreau H., Zhou X. Y., Zammarchi E., Kleijer W. J., Galjaard H., d'Azzo A. Insertion of a T next to the donor splice site of intron 1 causes aberrantly spliced mRNA in a case of infantile GM1-gangliosidosis. Hum Mutat. 1994;3(2):112–120. doi: 10.1002/humu.1380030205. [DOI] [PubMed] [Google Scholar]
  16. Munsick R. A. Human fetal extremity lengths in the interval from 9 to 21 menstrual weeks of pregnancy. Am J Obstet Gynecol. 1984 Aug 15;149(8):883–887. doi: 10.1016/0002-9378(84)90609-4. [DOI] [PubMed] [Google Scholar]
  17. Nakai K., Sakamoto H. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene. 1994 Apr 20;141(2):171–177. doi: 10.1016/0378-1119(94)90567-3. [DOI] [PubMed] [Google Scholar]
  18. Nesbitt T., Coffman T. M., Griffiths R., Drezner M. K. Crosstransplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect. J Clin Invest. 1992 May;89(5):1453–1459. doi: 10.1172/JCI115735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peral B., Gamble V., San Millán J. L., Strong C., Sloane-Stanley J., Moreno F., Harris P. C. Splicing mutations of the polycystic kidney disease 1 (PKD1) gene induced by intronic deletion. Hum Mol Genet. 1995 Apr;4(4):569–574. doi: 10.1093/hmg/4.4.569. [DOI] [PubMed] [Google Scholar]
  20. Rifas L., Gupta A., Hruska K. A., Avioli L. V. Altered osteoblast gluconeogenesis in X-linked hypophosphatemic mice is associated with a depressed intracellular pH. Calcif Tissue Int. 1995 Jul;57(1):60–63. doi: 10.1007/BF00298998. [DOI] [PubMed] [Google Scholar]
  21. Roques B. P., Noble F., Daugé V., Fournié-Zaluski M. C., Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993 Mar;45(1):87–146. [PubMed] [Google Scholar]
  22. Roy S., Martel J., Ma S., Tenenhouse H. S. Increased renal 25-hydroxyvitamin D3-24-hydroxylase messenger ribonucleic acid and immunoreactive protein in phosphate-deprived Hyp mice: a mechanism for accelerated 1,25-dihydroxyvitamin D3 catabolism in X-linked hypophosphatemic rickets. Endocrinology. 1994 Apr;134(4):1761–1767. doi: 10.1210/endo.134.4.8137741. [DOI] [PubMed] [Google Scholar]
  23. Roy S., Tenenhouse H. S. Transcriptional regulation and renal localization of 1,25-dihydroxyvitamin D3-24-hydroxylase gene expression: effects of the Hyp mutation and 1,25-dihydroxyvitamin D3. Endocrinology. 1996 Jul;137(7):2938–2946. doi: 10.1210/endo.137.7.8770917. [DOI] [PubMed] [Google Scholar]
  24. Scriver C. R., Tenenhouse H. S. Conserved loci on the X chromosome confer phosphate homeostasis in mice and humans. Genet Res. 1990 Oct-Dec;56(2-3):141–152. doi: 10.1017/s0016672300035229. [DOI] [PubMed] [Google Scholar]
  25. Stover M. L., Primorac D., Liu S. C., McKinstry M. B., Rowe D. W. Defective splicing of mRNA from one COL1A1 allele of type I collagen in nondeforming (type I) osteogenesis imperfecta. J Clin Invest. 1993 Oct;92(4):1994–2002. doi: 10.1172/JCI116794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tenenhouse H. S., Jones G. Abnormal regulation of renal vitamin D catabolism by dietary phosphate in murine X-linked hypophosphatemic rickets. J Clin Invest. 1990 May;85(5):1450–1455. doi: 10.1172/JCI114590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tenenhouse H. S., Klugerman A. H., Neal J. L. Effect of phosphonoformic acid, dietary phosphate and the Hyp mutation on kinetically distinct phosphate transport processes in mouse kidney. Biochim Biophys Acta. 1989 Sep 4;984(2):207–213. doi: 10.1016/0005-2736(89)90218-6. [DOI] [PubMed] [Google Scholar]
  28. Tenenhouse H. S., Martel J. Renal adaptation to phosphate deprivation: lessons from the X-linked Hyp mouse. Pediatr Nephrol. 1993 Jun;7(3):312–318. doi: 10.1007/BF00853232. [DOI] [PubMed] [Google Scholar]
  29. Tenenhouse H. S., Scriver C. R. X-linked hypophosphatemia. A phenotype in search of a cause. Int J Biochem. 1992 May;24(5):685–691. doi: 10.1016/0020-711x(92)90001-h. [DOI] [PubMed] [Google Scholar]
  30. Tenenhouse H. S., Werner A., Biber J., Ma S., Martel J., Roy S., Murer H. Renal Na(+)-phosphate cotransport in murine X-linked hypophosphatemic rickets. Molecular characterization. J Clin Invest. 1994 Feb;93(2):671–676. doi: 10.1172/JCI117019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tenenhouse H. S., Yip A., Jones G. Increased renal catabolism of 1,25-dihydroxyvitamin D3 in murine X-linked hypophosphatemic rickets. J Clin Invest. 1988 Feb;81(2):461–465. doi: 10.1172/JCI113342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xu D., Emoto N., Giaid A., Slaughter C., Kaw S., deWit D., Yanagisawa M. ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell. 1994 Aug 12;78(3):473–485. doi: 10.1016/0092-8674(94)90425-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES