Abstract
The aim of this study was to determine whether elements of the human renin-angiotensin system (RAS) could functionally replace elements of the mouse RAS by complementing the reduced survival and renal abnormalities observed in mice carrying a gene-targeted deletion of the mouse angiotensinogen gene (mAgt). Double transgenic mice containing the human renin (HREN) and human angiotensinogen (HAGT) genes were bred to mice heterozygous for the mAgt deletion and the compound heterozygotes were identified and intercrossed. The resulting progeny (n = 139) were genotyped at each locus and the population was stratified into two groups: the first containing both human transgenes (RA+) and the second containing zero or one, but not both human transgenes (RA-). Despite appropriate Mendelian ratios of RA- mice that were wildtype (+/+), heterozygous (+/-), and homozygous (-/-) for the deletion of mAgt at birth, there was reduced survival of RA- mAgt-/- mice to adulthood (P < 0.001 by chi2). In contrast, we observed appropriate Mendelian ratios of RA+ mAgt+/+, RA+ mAgt+/-, and RA+ mAgt-/- mice at birth and in adults (P > 0.05 by chi2). These results demonstrate that the presence of both human transgenes rescues the postnatal lethality in mAgt-/- mice. The renal histopathology exhibited by RA- mAgt-/- mice, including thickened arterial walls, severe fibrosis, lymphocytic infiltration, and atrophied parenchyma, was also rescued in the RA+ mAgt-/- mice. Direct arterial blood pressure recordings in conscious freely moving mice revealed that BP (in mmHg) varied proportionally to mAgt gene copy number in RA+ mice (approximately 20 mmHg per mAgt gene copy, P < 0.001). BP in RA+ mAgt-/- mice (132+/-3, n = 14) was intermediate between wild-type (RA- mAgt+/+, 105+/-2, n = 9) and RA+ mAgt+/+ (174+/-3, n = 10) mice. These studies establish that the human renin and angiotensinogen genes can functionally replace the mouse angiotensinogen gene, and provides proof in principle that we can examine the regulation of elements of the human RAS and test the significance of human RAS gene variants by a combined transgenic and gene targeting approach.
Full Text
The Full Text of this article is available as a PDF (495.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bronson S. K., Plaehn E. G., Kluckman K. D., Hagaman J. R., Maeda N., Smithies O. Single-copy transgenic mice with chosen-site integration. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9067–9072. doi: 10.1073/pnas.93.17.9067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell W. G., Jr, Gahnem F., Catanzaro D. F., James G. D., Camargo M. J., Laragh J. H., Sealey J. E. Plasma and renal prorenin/renin, renin mRNA, and blood pressure in Dahl salt-sensitive and salt-resistant rats. Hypertension. 1996 May;27(5):1121–1133. doi: 10.1161/01.hyp.27.5.1121. [DOI] [PubMed] [Google Scholar]
- Chua C. C., Diglio C. A., Siu B. B., Chua B. H. Angiotensin II induces TGF-beta 1 production in rat heart endothelial cells. Biochim Biophys Acta. 1994 Aug 11;1223(1):141–147. doi: 10.1016/0167-4889(94)90083-3. [DOI] [PubMed] [Google Scholar]
- Clark A. J., Bissinger P., Bullock D. W., Damak S., Wallace R., Whitelaw C. B., Yull F. Chromosomal position effects and the modulation of transgene expression. Reprod Fertil Dev. 1994;6(5):589–598. doi: 10.1071/rd9940589. [DOI] [PubMed] [Google Scholar]
- Delafontaine P., Lou H. Angiotensin II regulates insulin-like growth factor I gene expression in vascular smooth muscle cells. J Biol Chem. 1993 Aug 5;268(22):16866–16870. [PubMed] [Google Scholar]
- Esther C. R., Jr, Howard T. E., Marino E. M., Goddard J. M., Capecchi M. R., Bernstein K. E. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest. 1996 May;74(5):953–965. [PubMed] [Google Scholar]
- Friberg P., Sundelin B., Bohman S. O., Bobik A., Nilsson H., Wickman A., Gustafsson H., Petersen J., Adams M. A. Renin-angiotensin system in neonatal rats: induction of a renal abnormality in response to ACE inhibition or angiotensin II antagonism. Kidney Int. 1994 Feb;45(2):485–492. doi: 10.1038/ki.1994.63. [DOI] [PubMed] [Google Scholar]
- Gomez R. A., Tufro-McReddie A., Norwood V. F., Harris M., Pentz E. S. Renin-angiotensin system: kidney growth and development. Exp Nephrol. 1994 Mar-Apr;2(2):130–130. [PubMed] [Google Scholar]
- Grosveld F., van Assendelft G. B., Greaves D. R., Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. doi: 10.1016/0092-8674(87)90584-8. [DOI] [PubMed] [Google Scholar]
- Gyurko R., Wielbo D., Phillips M. I. Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept. 1993 Dec 10;49(2):167–174. doi: 10.1016/0167-0115(93)90438-e. [DOI] [PubMed] [Google Scholar]
- Hatae T., Takimoto E., Murakami K., Fukamizu A. Comparative studies on species-specific reactivity between renin and angiotensinogen. Mol Cell Biochem. 1994 Feb 9;131(1):43–47. doi: 10.1007/BF01075723. [DOI] [PubMed] [Google Scholar]
- Hein L., Barsh G. S., Pratt R. E., Dzau V. J., Kobilka B. K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744–747. doi: 10.1038/377744a0. [DOI] [PubMed] [Google Scholar]
- Ichiki T., Labosky P. A., Shiota C., Okuyama S., Imagawa Y., Fogo A., Niimura F., Ichikawa I., Hogan B. L., Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748–750. doi: 10.1038/377748a0. [DOI] [PubMed] [Google Scholar]
- Inoue I., Rohrwasser A., Helin C., Jeunemaitre X., Crain P., Bohlender J., Lifton R. P., Corvol P., Ward K., Lalouel J. M. A mutation of angiotensinogen in a patient with preeclampsia leads to altered kinetics of the renin-angiotensin system. J Biol Chem. 1995 May 12;270(19):11430–11436. doi: 10.1074/jbc.270.19.11430. [DOI] [PubMed] [Google Scholar]
- Ito M., Oliverio M. I., Mannon P. J., Best C. F., Maeda N., Smithies O., Coffman T. M. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3521–3525. doi: 10.1073/pnas.92.8.3521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeunemaitre X., Soubrier F., Kotelevtsev Y. V., Lifton R. P., Williams C. S., Charru A., Hunt S. C., Hopkins P. N., Williams R. R., Lalouel J. M. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992 Oct 2;71(1):169–180. doi: 10.1016/0092-8674(92)90275-h. [DOI] [PubMed] [Google Scholar]
- Kim H. S., Krege J. H., Kluckman K. D., Hagaman J. R., Hodgin J. B., Best C. F., Jennette J. C., Coffman T. M., Maeda N., Smithies O. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2735–2739. doi: 10.1073/pnas.92.7.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krege J. H., John S. W., Langenbach L. L., Hodgin J. B., Hagaman J. R., Bachman E. S., Jennette J. C., O'Brien D. A., Smithies O. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995 May 11;375(6527):146–148. doi: 10.1038/375146a0. [DOI] [PubMed] [Google Scholar]
- Lifton R. P., Dluhy R. G., Powers M., Rich G. M., Cook S., Ulick S., Lalouel J. M. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992 Jan 16;355(6357):262–265. doi: 10.1038/355262a0. [DOI] [PubMed] [Google Scholar]
- Lifton R. P., Hopkins P. N., Williams R. R., Hollenberg N. K., Williams G. H., Dluhy R. G. Evidence for heritability of non-modulating essential hypertension. Hypertension. 1989 Jun;13(6 Pt 2):884–889. doi: 10.1161/01.hyp.13.6.884. [DOI] [PubMed] [Google Scholar]
- Lodwick D., Kaiser M. A., Harris J., Cumin F., Vincent M., Samani N. J. Analysis of the role of angiotensinogen in spontaneous hypertension. Hypertension. 1995 Jun;25(6):1245–1251. doi: 10.1161/01.hyp.25.6.1245. [DOI] [PubMed] [Google Scholar]
- Lokuta A. J., Cooper C., Gaa S. T., Wang H. E., Rogers T. B. Angiotensin II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart cells. J Biol Chem. 1994 Feb 18;269(7):4832–4838. [PubMed] [Google Scholar]
- Merrill D. C., Thompson M. W., Carney C. L., Granwehr B. P., Schlager G., Robillard J. E., Sigmund C. D. Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J Clin Invest. 1996 Feb 15;97(4):1047–1055. doi: 10.1172/JCI118497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niimura F., Labosky P. A., Kakuchi J., Okubo S., Yoshida H., Oikawa T., Ichiki T., Naftilan A. J., Fogo A., Inagami T. Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest. 1995 Dec;96(6):2947–2954. doi: 10.1172/JCI118366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Re R. N. Myocardial hypertrophy, angiotensin, and ACE inhibitors. Angiology. 1993 Nov;44(11):875–881. doi: 10.1177/000331979304401105. [DOI] [PubMed] [Google Scholar]
- Shimkets R. A., Warnock D. G., Bositis C. M., Nelson-Williams C., Hansson J. H., Schambelan M., Gill J. R., Jr, Ulick S., Milora R. V., Findling J. W. Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994 Nov 4;79(3):407–414. doi: 10.1016/0092-8674(94)90250-x. [DOI] [PubMed] [Google Scholar]
- Sigmund C. D. Expression of the human renin gene in transgenic mice throughout ontogeny. Pediatr Nephrol. 1993 Oct;7(5):639–645. doi: 10.1007/BF00852572. [DOI] [PubMed] [Google Scholar]
- Sigmund C. D., Jones C. A., Jacob H. J., Ingelfinger J., Kim U., Gamble D., Dzau V. J., Gross K. W. Pathophysiology of vascular smooth muscle in renin promoter-T-antigen transgenic mice. Am J Physiol. 1991 Feb;260(2 Pt 2):F249–F257. doi: 10.1152/ajprenal.1991.260.2.F249. [DOI] [PubMed] [Google Scholar]
- Sigmund C. D., Jones C. A., Kane C. M., Wu C., Lang J. A., Gross K. W. Regulated tissue- and cell-specific expression of the human renin gene in transgenic mice. Circ Res. 1992 May;70(5):1070–1079. doi: 10.1161/01.res.70.5.1070. [DOI] [PubMed] [Google Scholar]
- Smithies O., Kim H. S. Targeted gene duplication and disruption for analyzing quantitative genetic traits in mice. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3612–3615. doi: 10.1073/pnas.91.9.3612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugaya T., Nishimatsu S., Tanimoto K., Takimoto E., Yamagishi T., Imamura K., Goto S., Imaizumi K., Hisada Y., Otsuka A. Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem. 1995 Aug 11;270(32):18719–18722. doi: 10.1074/jbc.270.32.18719. [DOI] [PubMed] [Google Scholar]
- Tanimoto K., Sugiyama F., Goto Y., Ishida J., Takimoto E., Yagami K., Fukamizu A., Murakami K. Angiotensinogen-deficient mice with hypotension. J Biol Chem. 1994 Dec 16;269(50):31334–31337. [PubMed] [Google Scholar]
- Thompson M. W., Smith S. B., Sigmund C. D. Regulation of human renin mRNA expression and protein release in transgenic mice. Hypertension. 1996 Aug;28(2):290–296. doi: 10.1161/01.hyp.28.2.290. [DOI] [PubMed] [Google Scholar]
- Tufro-McReddie A., Johns D. W., Geary K. M., Dagli H., Everett A. D., Chevalier R. L., Carey R. M., Gomez R. A. Angiotensin II type 1 receptor: role in renal growth and gene expression during normal development. Am J Physiol. 1994 Jun;266(6 Pt 2):F911–F918. doi: 10.1152/ajprenal.1994.266.6.F911. [DOI] [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
- Ward K., Hata A., Jeunemaitre X., Helin C., Nelson L., Namikawa C., Farrington P. F., Ogasawara M., Suzumori K., Tomoda S. A molecular variant of angiotensinogen associated with preeclampsia. Nat Genet. 1993 May;4(1):59–61. doi: 10.1038/ng0593-59. [DOI] [PubMed] [Google Scholar]
- Weaver D., Skinner S., Walker L., Sangster M. Phenotypic inhibition of the renin-angiotensin system, emergence of the Ren-2 gene, and adaptive radiation of mice. Gen Comp Endocrinol. 1991 Aug;83(2):306–315. doi: 10.1016/0016-6480(91)90035-5. [DOI] [PubMed] [Google Scholar]
- Wielbo D., Sernia C., Gyurko R., Phillips M. I. Antisense inhibition of hypertension in the spontaneously hypertensive rat. Hypertension. 1995 Mar;25(3):314–319. doi: 10.1161/01.hyp.25.3.314. [DOI] [PubMed] [Google Scholar]
- Yamada T., Horiuchi M., Dzau V. J. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):156–160. doi: 10.1073/pnas.93.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang G., Merrill D. C., Thompson M. W., Robillard J. E., Sigmund C. D. Functional expression of the human angiotensinogen gene in transgenic mice. J Biol Chem. 1994 Dec 23;269(51):32497–32502. [PubMed] [Google Scholar]
- al-Shawi R., Kinnaird J., Burke J., Bishop J. O. Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect. Mol Cell Biol. 1990 Mar;10(3):1192–1198. doi: 10.1128/mcb.10.3.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]