Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 15;99(6):1295–1301. doi: 10.1172/JCI119288

Cell cycle inhibition preserves endothelial function in genetically engineered rabbit vein grafts.

M J Mann 1, G H Gibbons 1, P S Tsao 1, H E von der Leyen 1, J P Cooke 1, R Buitrago 1, R Kernoff 1, V J Dzau 1
PMCID: PMC507945  PMID: 9077539

Abstract

We have recently shown that ex vivo gene therapy of rabbit autologous vein grafts with antisense oligodeoxynucleotides (AS ODN) blocking cell cycle regulatory gene expression inhibits not only neointimal hyperplasia, but also diet-induced, accelerated graft atherosclerosis. We observed that these grafts remained free of macrophage invasion and foam cell deposition. Since endothelial dysfunction plays an important role in vascular disease, the current study examined the effect of this genetic engineering strategy on graft endothelial function and its potential relationship to the engineered vessels' resistance to atherosclerosis. Rabbit vein grafts transfected with AS ODN against proliferating cell nuclear antigen (PCNA) and cell division cycle 2 (cdc2) kinase elaborated significantly more nitric oxide and exhibited greater vasorelaxation to both calcium ionophore and acetylcholine than did untreated or control ODN-treated grafts. This preservation of endothelial function was associated with a reduction in superoxide radical generation, vascular cell adhesion molecule-1 (VCAM-1) expression, and monocyte binding activity in grafts in both normal and hypercholesterolemic rabbits. Our data demonstrate that AS ODN arrest of vascular cell cycle progression results in the preservation of normal endothelial phenotype and function, thereby influencing the biology of the vessel wall towards a reduction of its susceptibility to occlusive disease.

Full Text

The Full Text of this article is available as a PDF (264.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bossaller C., Habib G. B., Yamamoto H., Williams C., Wells S., Henry P. D. Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5'-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest. 1987 Jan;79(1):170–174. doi: 10.1172/JCI112779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brewster D. C., LaSalle A. J., Robison J. G., Strayhorn E. C., Darling R. C. Factors affecting patency of femoropopliteal bypass grafts. Surg Gynecol Obstet. 1983 Nov;157(5):437–442. [PubMed] [Google Scholar]
  3. Campeau L., Enjalbert M., Lespérance J., Bourassa M. G., Kwiterovich P., Jr, Wacholder S., Sniderman A. The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation. A study 10 years after aortocoronary bypass surgery. N Engl J Med. 1984 Nov 22;311(21):1329–1332. doi: 10.1056/NEJM198411223112101. [DOI] [PubMed] [Google Scholar]
  4. Clinton S. K., Libby P. Cytokines and growth factors in atherogenesis. Arch Pathol Lab Med. 1992 Dec;116(12):1292–1300. [PubMed] [Google Scholar]
  5. Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cross K. S., Davies M. G., el-Sanadiki M. N., Murray J. J., Mikat E. M., Hagen P. O. Long-term human vein graft contractility and morphology: a functional and histopathological study of retrieved coronary vein grafts. Br J Surg. 1994 May;81(5):699–705. doi: 10.1002/bjs.1800810524. [DOI] [PubMed] [Google Scholar]
  8. Cross K. S., el-Sanadiki M. N., Murray J. J., Mikat E. M., McCann R. L., Hagen P. O. Functional abnormalities of experimental autogenous vein graft neoendothelium. Ann Surg. 1988 Nov;208(5):631–638. doi: 10.1097/00000658-198811000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cybulsky M. I., Gimbrone M. A., Jr Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991 Feb 15;251(4995):788–791. doi: 10.1126/science.1990440. [DOI] [PubMed] [Google Scholar]
  10. Davies M. G., Klyachkin M. L., Dalen H., Svendsen E., Hagen P. O. Regression of intimal hyperplasia with restoration of endothelium-dependent relaxing factor-mediated relaxation in experimental vein grafts. Surgery. 1993 Aug;114(2):258–271. [PubMed] [Google Scholar]
  11. De Caterina R., Libby P., Peng H. B., Thannickal V. J., Rajavashisth T. B., Gimbrone M. A., Jr, Shin W. S., Liao J. K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995 Jul;96(1):60–68. doi: 10.1172/JCI118074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galis Z. S., Muszynski M., Sukhova G. K., Simon-Morrissey E., Unemori E. N., Lark M. W., Amento E., Libby P. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994 Jul;75(1):181–189. doi: 10.1161/01.res.75.1.181. [DOI] [PubMed] [Google Scholar]
  13. Jayakody L., Senaratne M., Thomson A., Kappagoda T. Endothelium-dependent relaxation in experimental atherosclerosis in the rabbit. Circ Res. 1987 Feb;60(2):251–264. doi: 10.1161/01.res.60.2.251. [DOI] [PubMed] [Google Scholar]
  14. Khan B. V., Parthasarathy S. S., Alexander R. W., Medford R. M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest. 1995 Mar;95(3):1262–1270. doi: 10.1172/JCI117776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klyachkin M. L., Davies M. G., Svendsen E., Kim J. H., Massey M. F., Barber L., McCann R. L., Hagen P. O. Hypercholesterolemia and experimental vein grafts: accelerated development of intimal hyperplasia and an increase in abnormal vasomotor function. J Surg Res. 1993 May;54(5):451–468. doi: 10.1006/jsre.1993.1071. [DOI] [PubMed] [Google Scholar]
  16. Kohler T. R., Kirkman T. R., Gordon D., Clowes A. W. Mechanism of long-term degeneration of arterialized vein grafts. Am J Surg. 1990 Sep;160(3):257–261. doi: 10.1016/s0002-9610(06)80018-8. [DOI] [PubMed] [Google Scholar]
  17. Ku D. D., Caulfield J. B., Kirklin J. K. Endothelium-dependent responses in long-term human coronary artery bypass grafts. Circulation. 1991 Feb;83(2):402–411. doi: 10.1161/01.cir.83.2.402. [DOI] [PubMed] [Google Scholar]
  18. Loppnow H., Libby P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J Clin Invest. 1990 Mar;85(3):731–738. doi: 10.1172/JCI114498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lüscher T. F., Diederich D., Siebenmann R., Lehmann K., Stulz P., von Segesser L., Yang Z. H., Turina M., Grädel E., Weber E. Difference between endothelium-dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med. 1988 Aug 25;319(8):462–467. doi: 10.1056/NEJM198808253190802. [DOI] [PubMed] [Google Scholar]
  20. Mann M. J., Gibbons G. H., Kernoff R. S., Diet F. P., Tsao P. S., Cooke J. P., Kaneda Y., Dzau V. J. Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4502–4506. doi: 10.1073/pnas.92.10.4502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marui N., Offermann M. K., Swerlick R., Kunsch C., Rosen C. A., Ahmad M., Alexander R. W., Medford R. M. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993 Oct;92(4):1866–1874. doi: 10.1172/JCI116778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morishita R., Gibbons G. H., Ellison K. E., Nakajima M., Zhang L., Kaneda Y., Ogihara T., Dzau V. J. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8474–8478. doi: 10.1073/pnas.90.18.8474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Münzel T., Sayegh H., Freeman B. A., Tarpey M. M., Harrison D. G. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest. 1995 Jan;95(1):187–194. doi: 10.1172/JCI117637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Niu X. F., Smith C. W., Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res. 1994 Jun;74(6):1133–1140. doi: 10.1161/01.res.74.6.1133. [DOI] [PubMed] [Google Scholar]
  25. O'Neil G. S., Chester A. H., Schyns C. J., Tadjkarimi S., Borland J. A., Yacoub M. H. Effect of surgical preparation and arterialization on vasomotion of human saphenous vein. J Thorac Cardiovasc Surg. 1994 Mar;107(3):699–706. [PubMed] [Google Scholar]
  26. Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest. 1993 Jun;91(6):2546–2551. doi: 10.1172/JCI116491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Park T. C., Harker C. T., Edwards J. M., Moneta G. L., Taylor L. M., Jr, Porter J. M. Human saphenous vein grafts explanted from the arterial circulation demonstrate altered smooth-muscle and endothelial responses. J Vasc Surg. 1993 Jul;18(1):61–69. doi: 10.1067/mva.1993.42071. [DOI] [PubMed] [Google Scholar]
  28. Tanaka H., Sukhova G. K., Swanson S. J., Clinton S. K., Ganz P., Cybulsky M. I., Libby P. Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation. 1993 Oct;88(4 Pt 1):1788–1803. doi: 10.1161/01.cir.88.4.1788. [DOI] [PubMed] [Google Scholar]
  29. Tsao P. S., Buitrago R., Chan J. R., Cooke J. P. Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation. 1996 Oct 1;94(7):1682–1689. doi: 10.1161/01.cir.94.7.1682. [DOI] [PubMed] [Google Scholar]
  30. Tsao P. S., McEvoy L. M., Drexler H., Butcher E. C., Cooke J. P. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation. 1994 May;89(5):2176–2182. doi: 10.1161/01.cir.89.5.2176. [DOI] [PubMed] [Google Scholar]
  31. Verbeuren T. J., Jordaens F. H., Zonnekeyn L. L., Van Hove C. E., Coene M. C., Herman A. G. Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 1986 Apr;58(4):552–564. doi: 10.1161/01.res.58.4.552. [DOI] [PubMed] [Google Scholar]
  32. Weidinger F. F., McLenachan J. M., Cybulsky M. I., Gordon J. B., Rennke H. G., Hollenberg N. K., Fallon J. T., Ganz P., Cooke J. P. Persistent dysfunction of regenerated endothelium after balloon angioplasty of rabbit iliac artery. Circulation. 1990 May;81(5):1667–1679. doi: 10.1161/01.cir.81.5.1667. [DOI] [PubMed] [Google Scholar]
  33. Zeiher A. M., Fisslthaler B., Schray-Utz B., Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res. 1995 Jun;76(6):980–986. doi: 10.1161/01.res.76.6.980. [DOI] [PubMed] [Google Scholar]
  34. Zwolak R. M., Adams M. C., Clowes A. W. Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg. 1987 Jan;5(1):126–136. [PubMed] [Google Scholar]
  35. von der Leyen H. E., Gibbons G. H., Morishita R., Lewis N. P., Zhang L., Nakajima M., Kaneda Y., Cooke J. P., Dzau V. J. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1137–1141. doi: 10.1073/pnas.92.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES