Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 15;99(6):1302–1312. doi: 10.1172/JCI119289

Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content.

M Lötscher 1, B Kaissling 1, J Biber 1, H Murer 1, M Levi 1
PMCID: PMC507946  PMID: 9077540

Abstract

Renal proximal tubular response to acute administration of a low Pi diet is characterized by a rapid adaptive increase in apical brush border membrane (BBM) Na-Pi cotransport activity and Na-Pi cotransporter protein abundance, independent of a change in Na-Pi cotransporter mRNA levels (Levi, M., M. Lötscher, V. Sorribas, M. Custer, M. Arar, B. Kaissling, H. Murer, and J. Biber. 1994. Am. J. Physiol. 267: F900-F908). The purposes of the present study were to determine if the acute adaptive response occurs independent of de novo protein synthesis, and if microtubules play a role in the rapid upregulation of the Na-Pi cotransporters at the apical BBM. We found that inhibition of transcription by actinomycin D and translation by cycloheximide did not prevent the rapid adaptive response. In addition, in spite of a 3.3-fold increase in apical BBM Na-Pi cotransporter protein abundance, there was no change in cortical homogenate Na-Pi cotransporter protein abundance. Pretreatment with colchicine, which resulted in almost complete disruption of the microtubular network, abolished the adaptive increases in BBM Na-Pi cotransport activity and Na-Pi cotransporter protein abundance. In contrast, colchicine had no effect on the rapid downregulation of Na-Pi cotransport in response to acute administration of a high Pi diet. We conclude that the rapid adaptive increase in renal proximal tubular apical BBM Na-Pi cotransport activity and Na-Pi cotransporter abundance is independent of de novo protein synthesis, and is mediated by microtubule-dependent translocation of presynthesized Na-Pi cotransporter protein to the apical BBM.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbate M., Bonventre J. V., Brown D. The microtubule network of renal epithelial cells is disrupted by ischemia and reperfusion. Am J Physiol. 1994 Dec;267(6 Pt 2):F971–F978. doi: 10.1152/ajprenal.1994.267.6.F971. [DOI] [PubMed] [Google Scholar]
  2. Barrett P. Q., Gertner J. M., Rasmussen H. Effect of dietary phosphate on transport properties of pig renal microvillus vesicles. Am J Physiol. 1980 Oct;239(4):F352–F359. doi: 10.1152/ajprenal.1980.239.4.F352. [DOI] [PubMed] [Google Scholar]
  3. Biber J., Forgo J., Murer H. Modulation of Na+-Pi cotransport in opossum kidney cells by extracellular phosphate. Am J Physiol. 1988 Aug;255(2 Pt 1):C155–C161. doi: 10.1152/ajpcell.1988.255.2.C155. [DOI] [PubMed] [Google Scholar]
  4. Biber J., Murer H. Na-Pi cotransport in LLC-PK1 cells: fast adaptive response to Pi deprivation. Am J Physiol. 1985 Nov;249(5 Pt 1):C430–C434. doi: 10.1152/ajpcell.1985.249.5.C430. [DOI] [PubMed] [Google Scholar]
  5. Bloom G. S., Brashear T. A. A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J Biol Chem. 1989 Sep 25;264(27):16083–16092. [PubMed] [Google Scholar]
  6. Brown D., Sabolic I., Gluck S. Colchicine-induced redistribution of proton pumps in kidney epithelial cells. Kidney Int Suppl. 1991 Jul;33:S79–S83. [PubMed] [Google Scholar]
  7. Caverzasio J., Brown C. D., Biber J., Bonjour J. P., Murer H. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells. Am J Physiol. 1985 Jan;248(1 Pt 2):F122–F127. doi: 10.1152/ajprenal.1985.248.1.F122. [DOI] [PubMed] [Google Scholar]
  8. Cheng L., Liang C. T., Sacktor B. Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets. Am J Physiol. 1983 Aug;245(2):F175–F180. doi: 10.1152/ajprenal.1983.245.2.F175. [DOI] [PubMed] [Google Scholar]
  9. Cole N. B., Lippincott-Schwartz J. Organization of organelles and membrane traffic by microtubules. Curr Opin Cell Biol. 1995 Feb;7(1):55–64. doi: 10.1016/0955-0674(95)80045-x. [DOI] [PubMed] [Google Scholar]
  10. Coudrier E., Kerjaschki D., Louvard D. Cytoskeleton organization and submembranous interactions in intestinal and renal brush borders. Kidney Int. 1988 Sep;34(3):309–320. doi: 10.1038/ki.1988.183. [DOI] [PubMed] [Google Scholar]
  11. Custer M., Lötscher M., Biber J., Murer H., Kaissling B. Expression of Na-P(i) cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol. 1994 May;266(5 Pt 2):F767–F774. doi: 10.1152/ajprenal.1994.266.5.F767. [DOI] [PubMed] [Google Scholar]
  12. Donaldson J. G., Lippincott-Schwartz J., Bloom G. S., Kreis T. E., Klausner R. D. Dissociation of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A action. J Cell Biol. 1990 Dec;111(6 Pt 1):2295–2306. doi: 10.1083/jcb.111.6.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elkjaer M. L., Birn H., Agre P., Christensen E. I., Nielsen S. Effects of microtubule disruption on endocytosis, membrane recycling and polarized distribution of Aquaporin-1 and gp330 in proximal tubule cells. Eur J Cell Biol. 1995 May;67(1):57–72. [PubMed] [Google Scholar]
  14. Fuller C. M., Bridges R. J., Benos D. J. Forskolin- but not ionomycin-evoked Cl- secretion in colonic epithelia depends on intact microtubules. Am J Physiol. 1994 Mar;266(3 Pt 1):C661–C668. doi: 10.1152/ajpcell.1994.266.3.C661. [DOI] [PubMed] [Google Scholar]
  15. Gilbert T., Le Bivic A., Quaroni A., Rodriguez-Boulan E. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells. J Cell Biol. 1991 Apr;113(2):275–288. doi: 10.1083/jcb.113.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gottlieb T. A., Ivanov I. E., Adesnik M., Sabatini D. D. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol. 1993 Feb;120(3):695–710. doi: 10.1083/jcb.120.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Green S. A., Zimmer K. P., Griffiths G., Mellman I. Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins. J Cell Biol. 1987 Sep;105(3):1227–1240. doi: 10.1083/jcb.105.3.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gruenberg J., Griffiths G., Howell K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol. 1989 Apr;108(4):1301–1316. doi: 10.1083/jcb.108.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gutmann E. J., Niles J. L., McCluskey R. T., Brown D. Colchicine-induced redistribution of an apical membrane glycoprotein (gp330) in proximal tubules. Am J Physiol. 1989 Aug;257(2 Pt 1):C397–C407. doi: 10.1152/ajpcell.1989.257.2.C397. [DOI] [PubMed] [Google Scholar]
  20. Harter C., Mellman I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J Cell Biol. 1992 Apr;117(2):311–325. doi: 10.1083/jcb.117.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Howe C. L., Granger B. L., Hull M., Green S. A., Gabel C. A., Helenius A., Mellman I. Derived protein sequence, oligosaccharides, and membrane insertion of the 120-kDa lysosomal membrane glycoprotein (lgp120): identification of a highly conserved family of lysosomal membrane glycoproteins. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7577–7581. doi: 10.1073/pnas.85.20.7577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Katsura T., Verbavatz J. M., Farinas J., Ma T., Ausiello D. A., Verkman A. S., Brown D. Constitutive and regulated membrane expression of aquaporin 1 and aquaporin 2 water channels in stably transfected LLC-PK1 epithelial cells. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7212–7216. doi: 10.1073/pnas.92.16.7212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kellerman P. S., Clark R. A., Hoilien C. A., Linas S. L., Molitoris B. A. Role of microfilaments in maintenance of proximal tubule structural and functional integrity. Am J Physiol. 1990 Aug;259(2 Pt 2):F279–F285. doi: 10.1152/ajprenal.1990.259.2.F279. [DOI] [PubMed] [Google Scholar]
  24. Kempson S. A., Dousa T. P. Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet. Life Sci. 1979 Mar 5;24(10):881–887. doi: 10.1016/0024-3205(79)90337-0. [DOI] [PubMed] [Google Scholar]
  25. Ktistakis N. T., Roth M. G., Bloom G. S. PtK1 cells contain a nondiffusible, dominant factor that makes the Golgi apparatus resistant to brefeldin A. J Cell Biol. 1991 Jun;113(5):1009–1023. doi: 10.1083/jcb.113.5.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lafont F., Burkhardt J. K., Simons K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature. 1994 Dec 22;372(6508):801–803. doi: 10.1038/372801a0. [DOI] [PubMed] [Google Scholar]
  28. Levi M., Baird B. M., Wilson P. V. Cholesterol modulates rat renal brush border membrane phosphate transport. J Clin Invest. 1990 Jan;85(1):231–237. doi: 10.1172/JCI114417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Levi M., Jameson D. M., van der Meer B. W. Role of BBM lipid composition and fluidity in impaired renal Pi transport in aged rat. Am J Physiol. 1989 Jan;256(1 Pt 2):F85–F94. doi: 10.1152/ajprenal.1989.256.1.F85. [DOI] [PubMed] [Google Scholar]
  30. Levi M., Lötscher M., Sorribas V., Custer M., Arar M., Kaissling B., Murer H., Biber J. Cellular mechanisms of acute and chronic adaptation of rat renal P(i) transporter to alterations in dietary P(i). Am J Physiol. 1994 Nov;267(5 Pt 2):F900–F908. doi: 10.1152/ajprenal.1994.267.5.F900. [DOI] [PubMed] [Google Scholar]
  31. Levine B. S., Ho L. D., Pasiecznik K., Coburn J. W. Renal adaptation to phosphorus deprivation: characterization of early events. J Bone Miner Res. 1986 Feb;1(1):33–40. doi: 10.1002/jbmr.5650010107. [DOI] [PubMed] [Google Scholar]
  32. Lewis V., Green S. A., Marsh M., Vihko P., Helenius A., Mellman I. Glycoproteins of the lysosomal membrane. J Cell Biol. 1985 Jun;100(6):1839–1847. doi: 10.1083/jcb.100.6.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Markovich D., Verri T., Sorribas V., Forgo J., Biber J., Murer H. Regulation of opossum kidney (OK) cell Na/Pi cotransport by Pi deprivation involves mRNA stability. Pflugers Arch. 1995 Aug;430(4):459–463. doi: 10.1007/BF00373881. [DOI] [PubMed] [Google Scholar]
  34. Mays R. W., Beck K. A., Nelson W. J. Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr Opin Cell Biol. 1994 Feb;6(1):16–24. doi: 10.1016/0955-0674(94)90111-2. [DOI] [PubMed] [Google Scholar]
  35. Mills J. W., Mandel L. J. Cytoskeletal regulation of membrane transport events. FASEB J. 1994 Nov;8(14):1161–1165. doi: 10.1096/fasebj.8.14.7958622. [DOI] [PubMed] [Google Scholar]
  36. Mills J. W., Schwiebert E. M., Stanton B. A. The cytoskeleton and membrane transport. Curr Opin Nephrol Hypertens. 1994 Sep;3(5):529–534. doi: 10.1097/00041552-199409000-00009. [DOI] [PubMed] [Google Scholar]
  37. Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nunnari J., Walter P. Regulation of organelle biogenesis. Cell. 1996 Feb 9;84(3):389–394. doi: 10.1016/s0092-8674(00)81283-0. [DOI] [PubMed] [Google Scholar]
  39. Shah S. V., Kempson S. A., Northrup T. E., Dousa T. P. Renal adaptation to a low phosphate diet in rats. J Clin Invest. 1979 Oct;64(4):955–966. doi: 10.1172/JCI109562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stoll R., Kinne R., Murer H. Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles. Biochem J. 1979 Jun 15;180(3):465–470. doi: 10.1042/bj1800465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Verrey F., Groscurth P., Bolliger U. Cytoskeletal disruption in A6 kidney cells: impact on endo/exocytosis and NaCl transport regulation by antidiuretic hormone. J Membr Biol. 1995 May;145(2):193–204. doi: 10.1007/BF00237377. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES