Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 15;99(6):1420–1431. doi: 10.1172/JCI119301

Metabolic acidosis stimulates H+ secretion in the rabbit outer medullary collecting duct (inner stripe) of the kidney.

S Tsuruoka 1, G J Schwartz 1
PMCID: PMC507958  PMID: 9077552

Abstract

The outer medullary collecting duct (OMCD) absorbs HCO3- at high rates, but it is not clear if it responds to metabolic acidosis to increase H+ secretion. We measured net HCO3- transport in isolated perfused OMCDs taken from deep in the inner stripes of kidneys from control and acidotic (NH4Cl-fed for 3 d) rabbits. We used specific inhibitors to characterize the mechanisms of HCO3- transport: 10 microM Sch 28080 or luminal K+ removal to inhibit P-type H+,K+-ATPase activity, and 5-10 nM bafilomycin A1 or 1-10 nM concanamycin A to inhibit H+-ATPase activity. The results were comparable using either of each pair of inhibitors, and allowed us to show in control rabbits that 65% of net HCO3- absorption depended on H+-ATPase (H flux), and 35% depended on H+,K+-ATPase (H,K flux). Tubules from acidotic rabbits showed higher rates of HCO3- absorption (16.8+/-0.3 vs. 12.8+/-0.2 pmol/min per mm, P < 0.01). There was no difference in the H,K flux (5.9+/-0.2 vs. 5.8+/-0.2 pmol/min per mm), whereas there was a 61% higher H flux in segments from acidotic rabbits (11.3+/-0.2 vs. 7.0+/-0.2 pmol/min per mm, P < 0.01). Transport was then measured in other OMCDs before and after incubation for 1 h at pH 6.8, followed by 2 h at pH 7.4 (in vitro metabolic acidosis). Acid incubation in vitro stimulated HCO3- absorption (12.3+/-0.3 to 16.2+/-0.3 pmol/min per mm, P < 0.01), while incubation at pH 7.4 for 3 h did not change basal rate (11.8+/-0.4 to 11.7+/-0.4 pmol/min per mm). After acid incubation the H,K flux did not change, (4.7+/-0.4 to 4.6+/-0.4 pmol/min per mm), however, there was a 60% increase in H flux (6.6+/-0.3 to 10.8+/-0.3 pmol/min per mm, P < 0.01). In OMCDs from acidotic animals, and in OMCDs incubated in acid in vitro, there was a higher basal rate and a further increase in HCO3- absorption (16.7+/-0.4 to 21.3+/-0.3 pmol/min per mm, P < 0.01) because of increased H flux (11.5+/-0.3 to 15.7+/-0.2 pmol/min per mm, P < 0.01) without any change in H,K flux (5.4+/-0.3 to 5.6+/-0.3 pmol/min per mm). These data indicate that HCO3- absorption (H+ secretion) in OMCD is stimulated by metabolic acidosis in vivo and in vitro by an increase in H+-ATPase-sensitive HCO3- absorption. The mechanism of adaptation may involve increased synthesis and exocytosis to the apical membrane of proton pumps. This adaptation helps maintain homeostasis during metabolic acidosis.

Full Text

The Full Text of this article is available as a PDF (307.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiba T., Rocco V. K., Warnock D. G. Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis. J Clin Invest. 1987 Aug;80(2):308–315. doi: 10.1172/JCI113074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armitage F. E., Wingo C. S. Luminal acidification in K-replete OMCDi: contributions of H-K-ATPase and bafilomycin-A1-sensitive H-ATPase. Am J Physiol. 1994 Sep;267(3 Pt 2):F450–F458. doi: 10.1152/ajprenal.1994.267.3.F450. [DOI] [PubMed] [Google Scholar]
  4. Armitage F. E., Wingo C. S. Luminal acidification in K-replete OMCDi: inhibition of bicarbonate absorption by K removal and luminal Ba. Am J Physiol. 1995 Jul;269(1 Pt 2):F116–F124. doi: 10.1152/ajprenal.1995.269.1.F116. [DOI] [PubMed] [Google Scholar]
  5. Atkins J. L., Burg M. B. Bicarbonate transport by isolated perfused rat collecting ducts. Am J Physiol. 1985 Oct;249(4 Pt 2):F485–F489. doi: 10.1152/ajprenal.1985.249.4.F485. [DOI] [PubMed] [Google Scholar]
  6. Bastani B., Purcell H., Hemken P., Trigg D., Gluck S. Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest. 1991 Jul;88(1):126–136. doi: 10.1172/JCI115268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bengele H. H., Schwartz J. H., McNamara E. R., Alexander E. A. Chronic metabolic acidosis augments acidification along the inner medullary collecting duct. Am J Physiol. 1986 Apr;250(4 Pt 2):F690–F694. doi: 10.1152/ajprenal.1986.250.4.F690. [DOI] [PubMed] [Google Scholar]
  8. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brion L. P., Zavilowitz B. J., Suarez C., Schwartz G. J. Metabolic acidosis stimulates carbonic anhydrase activity in rabbit proximal tubule and medullary collecting duct. Am J Physiol. 1994 Feb;266(2 Pt 2):F185–F195. doi: 10.1152/ajprenal.1994.266.2.F185. [DOI] [PubMed] [Google Scholar]
  10. Brown D., Hirsch S., Gluck S. Localization of a proton-pumping ATPase in rat kidney. J Clin Invest. 1988 Dec;82(6):2114–2126. doi: 10.1172/JCI113833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown D., Weyer P., Orci L. Nonclathrin-coated vesicles are involved in endocytosis in kidney collecting duct intercalated cells. Anat Rec. 1987 Jul;218(3):237–242. doi: 10.1002/ar.1092180303. [DOI] [PubMed] [Google Scholar]
  12. Burg M., Green N. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am J Physiol. 1977 Oct;233(4):F307–F314. doi: 10.1152/ajprenal.1977.233.4.F307. [DOI] [PubMed] [Google Scholar]
  13. Cheval L., Barlet-Bas C., Khadouri C., Feraille E., Marsy S., Doucet A. K(+)-ATPase-mediated Rb+ transport in rat collecting tubule: modulation during K+ deprivation. Am J Physiol. 1991 Jun;260(6 Pt 2):F800–F805. doi: 10.1152/ajprenal.1991.260.6.F800. [DOI] [PubMed] [Google Scholar]
  14. Dröse S., Bindseil K. U., Bowman E. J., Siebers A., Zeeck A., Altendorf K. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993 Apr 20;32(15):3902–3906. doi: 10.1021/bi00066a008. [DOI] [PubMed] [Google Scholar]
  15. Fejes-Tóth G., Náray-Fejes-Tóth A. Effect of acid/base balance on H-ATPase 31 kD subunit mRNA levels in collecting duct cells. Kidney Int. 1995 Nov;48(5):1420–1426. doi: 10.1038/ki.1995.431. [DOI] [PubMed] [Google Scholar]
  16. Garg L. C., Narang N. Stimulation of an N-ethylmaleimide-sensitive ATPase in the collecting duct segments of the rat nephron by metabolic acidosis. Can J Physiol Pharmacol. 1985 Oct;63(10):1291–1296. doi: 10.1139/y85-213. [DOI] [PubMed] [Google Scholar]
  17. Gifford J. D., Rome L., Galla J. H. H(+)-K(+)-ATPase activity in rat collecting duct segments. Am J Physiol. 1992 Apr;262(4 Pt 2):F692–F695. doi: 10.1152/ajprenal.1992.262.4.F692. [DOI] [PubMed] [Google Scholar]
  18. Gluck S., Cannon C., Al-Awqati Q. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4327–4331. doi: 10.1073/pnas.79.14.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Graber M. L., Bengele H. H., Mroz E., Lechene C., Alexander E. A. Acute metabolic acidosis augments collecting duct acidification rate in the rat. Am J Physiol. 1981 Dec;241(6):F669–F676. doi: 10.1152/ajprenal.1981.241.6.F669. [DOI] [PubMed] [Google Scholar]
  20. Hamm L. L., Hering-Smith K. S., Vehaskari V. M. Control of bicarbonate transport in collecting tubules from normal and remnant kidneys. Am J Physiol. 1989 Apr;256(4 Pt 2):F680–F687. doi: 10.1152/ajprenal.1989.256.4.F680. [DOI] [PubMed] [Google Scholar]
  21. Hays S. R., Alpern R. J. Apical and basolateral membrane H+ extrusion mechanisms in inner stripe of rabbit outer medullary collecting duct. Am J Physiol. 1990 Oct;259(4 Pt 2):F628–F635. doi: 10.1152/ajprenal.1990.259.4.F628. [DOI] [PubMed] [Google Scholar]
  22. Ishibashi K., Sasaki S., Yoshiyama N., Shiigai T., Takeuchi J. Generation of pH gradient across the rabbit collecting duct segments perfused in vitro. Kidney Int. 1987 Apr;31(4):930–936. doi: 10.1038/ki.1987.88. [DOI] [PubMed] [Google Scholar]
  23. Kinashi H., Someno K., Sakaguchi K. Isolation and characterization of concanamycins A, B and C. J Antibiot (Tokyo) 1984 Nov;37(11):1333–1343. doi: 10.7164/antibiotics.37.1333. [DOI] [PubMed] [Google Scholar]
  24. Laski M. E., Kurtzman N. A. Collecting tubule adaptation to respiratory acidosis induced in vivo. Am J Physiol. 1990 Jan;258(1 Pt 2):F15–F20. doi: 10.1152/ajprenal.1990.258.1.F15. [DOI] [PubMed] [Google Scholar]
  25. Lombard W. E., Kokko J. P., Jacobson H. R. Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol. 1983 Mar;244(3):F289–F296. doi: 10.1152/ajprenal.1983.244.3.F289. [DOI] [PubMed] [Google Scholar]
  26. Madsen K. M., Tisher C. C. Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab Invest. 1984 Sep;51(3):268–276. [PubMed] [Google Scholar]
  27. Manger T. M., Koeppen B. M. Characterization of acid-base transporters in cultured outer medullary collecting duct cells. Am J Physiol. 1992 Dec;263(6 Pt 2):F996–1003. doi: 10.1152/ajprenal.1992.263.6.F996. [DOI] [PubMed] [Google Scholar]
  28. Mattsson J. P., Vänänen K., Wallmark B., Lorentzon P. Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochim Biophys Acta. 1991 Jun 18;1065(2):261–268. doi: 10.1016/0005-2736(91)90238-4. [DOI] [PubMed] [Google Scholar]
  29. McKinney T. D., Burg M. B. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J Clin Invest. 1978 Jun;61(6):1421–1427. doi: 10.1172/JCI109061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McKinney T. D., Burg M. B. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest. 1977 Sep;60(3):766–768. doi: 10.1172/JCI108830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McKinney T. D., Davidson K. K. Bicarbonate transport in collecting tubules from outer stripe of outer medulla of rabbit kidneys. Am J Physiol. 1987 Nov;253(5 Pt 2):F816–F822. doi: 10.1152/ajprenal.1987.253.5.F816. [DOI] [PubMed] [Google Scholar]
  32. McKinney T. D., Davidson K. K. Effects of respiratory acidosis on HCO3- transport by rabbit collecting tubules. Am J Physiol. 1988 Oct;255(4 Pt 2):F656–F665. doi: 10.1152/ajprenal.1988.255.4.F656. [DOI] [PubMed] [Google Scholar]
  33. Neugarten J., Kozin A., Gayner R., Schacht R. G., Baldwin D. S. Dietary protein restriction and glomerular permselectivity in nephrotoxic serum nephritis. Kidney Int. 1991 Jul;40(1):57–61. doi: 10.1038/ki.1991.179. [DOI] [PubMed] [Google Scholar]
  34. Preisig P. A., Alpern R. J. Chronic metabolic acidosis causes an adaptation in the apical membrane Na/H antiporter and basolateral membrane Na(HCO3)3 symporter in the rat proximal convoluted tubule. J Clin Invest. 1988 Oct;82(4):1445–1453. doi: 10.1172/JCI113750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ridderstrale Y., Kashgarian M., Koeppen B., Giebisch G., Stetson D., Ardito T., Stanton B. Morphological heterogeneity of the rabbit collecting duct. Kidney Int. 1988 Nov;34(5):655–670. doi: 10.1038/ki.1988.230. [DOI] [PubMed] [Google Scholar]
  36. Satlin L. M., Schwartz G. J. Cellular remodeling of HCO3(-)-secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol. 1989 Sep;109(3):1279–1288. doi: 10.1083/jcb.109.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schuster V. L., Fejes-Tóth G., Naray-Fejes-Tóth A., Gluck S. Colocalization of H(+)-ATPase and band 3 anion exchanger in rabbit collecting duct intercalated cells. Am J Physiol. 1991 Apr;260(4 Pt 2):F506–F517. doi: 10.1152/ajprenal.1991.260.4.F506. [DOI] [PubMed] [Google Scholar]
  38. Schuster V. L. Function and regulation of collecting duct intercalated cells. Annu Rev Physiol. 1993;55:267–288. doi: 10.1146/annurev.ph.55.030193.001411. [DOI] [PubMed] [Google Scholar]
  39. Schwartz G. J., Al-Awqati Q. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest. 1985 May;75(5):1638–1644. doi: 10.1172/JCI111871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schwartz G. J., Al-Awqati Q. Regulation of transepithelial H+ transport by exocytosis and endocytosis. Annu Rev Physiol. 1986;48:153–161. doi: 10.1146/annurev.ph.48.030186.001101. [DOI] [PubMed] [Google Scholar]
  41. Schwartz G. J., Barasch J., Al-Awqati Q. Plasticity of functional epithelial polarity. 1985 Nov 28-Dec 4Nature. 318(6044):368–371. doi: 10.1038/318368a0. [DOI] [PubMed] [Google Scholar]
  42. Schwartz G. J., Weinstein A. M., Steele R. E., Stephenson J. L., Burg M. B. Carbon dioxide permeability of rabbit proximal convoluted tubules. Am J Physiol. 1981 Mar;240(3):F231–F244. doi: 10.1152/ajprenal.1981.240.3.F231. [DOI] [PubMed] [Google Scholar]
  43. Schwartz G. J., Winkler C. A., Zavilowitz B. J., Bargiello T. Carbonic anhydrase II mRNA is induced in rabbit kidney cortex during chronic metabolic acidosis. Am J Physiol. 1993 Dec;265(6 Pt 2):F764–F772. doi: 10.1152/ajprenal.1993.265.6.F764. [DOI] [PubMed] [Google Scholar]
  44. Stetson D. L., Steinmetz P. R. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am J Physiol. 1983 Jul;245(1):C113–C120. doi: 10.1152/ajpcell.1983.245.1.C113. [DOI] [PubMed] [Google Scholar]
  45. Stokes J. B. Ion transport by the cortical and outer medullary collecting tubule. Kidney Int. 1982 Nov;22(5):473–484. doi: 10.1038/ki.1982.200. [DOI] [PubMed] [Google Scholar]
  46. Stone D. K., Seldin D. W., Kokko J. P., Jacobson H. R. Anion dependence of rabbit medullary collecting duct acidification. J Clin Invest. 1983 May;71(5):1505–1508. doi: 10.1172/JCI110905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsuruoka S., Schwartz G. J. Adaptation of rabbit cortical collecting duct HCO3- transport to metabolic acidosis in vitro. J Clin Invest. 1996 Feb 15;97(4):1076–1084. doi: 10.1172/JCI118500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Verlander J. W., Madsen K. M., Cannon J. K., Tisher C. C. Activation of acid-secreting intercalated cells in rabbit collecting duct with ammonium chloride loading. Am J Physiol. 1994 Apr;266(4 Pt 2):F633–F645. doi: 10.1152/ajprenal.1994.266.4.F633. [DOI] [PubMed] [Google Scholar]
  49. Wall S. M., Sands J. M., Flessner M. F., Nonoguchi H., Spring K. R., Knepper M. A. Net acid transport by isolated perfused inner medullary collecting ducts. Am J Physiol. 1990 Jan;258(1 Pt 2):F75–F84. doi: 10.1152/ajprenal.1990.258.1.F75. [DOI] [PubMed] [Google Scholar]
  50. Wallmark B., Briving C., Fryklund J., Munson K., Jackson R., Mendlein J., Rabon E., Sachs G. Inhibition of gastric H+,K+-ATPase and acid secretion by SCH 28080, a substituted pyridyl(1,2a)imidazole. J Biol Chem. 1987 Feb 15;262(5):2077–2084. [PubMed] [Google Scholar]
  51. Weiner I. D., Wingo C. S., Hamm L. L. Regulation of intracellular pH in two cell populations of inner stripe of rabbit outer medullary collecting duct. Am J Physiol. 1993 Sep;265(3 Pt 2):F406–F415. doi: 10.1152/ajprenal.1993.265.3.F406. [DOI] [PubMed] [Google Scholar]
  52. Werner G., Hagenmaier H., Drautz H., Baumgartner A., Zähner H. Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J Antibiot (Tokyo) 1984 Feb;37(2):110–117. doi: 10.7164/antibiotics.37.110. [DOI] [PubMed] [Google Scholar]
  53. Wingo C. S., Smolka A. J. Function and structure of H-K-ATPase in the kidney. Am J Physiol. 1995 Jul;269(1 Pt 2):F1–16. doi: 10.1152/ajprenal.1995.269.1.F1. [DOI] [PubMed] [Google Scholar]
  54. Yasoshima K., Satlin L. M., Schwartz G. J. Adaptation of rabbit cortical collecting duct to in vitro acid incubation. Am J Physiol. 1992 Oct;263(4 Pt 2):F749–F756. doi: 10.1152/ajprenal.1992.263.4.F749. [DOI] [PubMed] [Google Scholar]
  55. Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991 Sep 15;266(26):17707–17712. [PubMed] [Google Scholar]
  56. Zhou X., Wingo C. S. Mechanisms of rubidium permeation by rabbit cortical collecting duct during potassium restriction. Am J Physiol. 1992 Dec;263(6 Pt 2):F1134–F1141. doi: 10.1152/ajprenal.1992.263.6.F1134. [DOI] [PubMed] [Google Scholar]
  57. Zhou X., Wingo C. S. Stimulation of total CO2 flux by 10% CO2 in rabbit CCD: role of an apical Sch-28080- and Ba-sensitive mechanism. Am J Physiol. 1994 Jul;267(1 Pt 2):F114–F120. doi: 10.1152/ajprenal.1994.267.1.F114. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES