Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Mar 15;99(6):1453–1459. doi: 10.1172/JCI119304

Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion.

Z S Vexler 1, T P Roberts 1, A W Bollen 1, N Derugin 1, A I Arieff 1
PMCID: PMC507961  PMID: 9077555

Abstract

Apoptosis is thought to be important in the pathogenesis of cerebral ischemia. The mechanism of apoptosis induction remains unclear but several studies suggest that it is preferentially triggered by mild/moderate microcirculatory disturbances. We examined in cats whether induction of apoptosis after 2.5 h of unilateral middle cerebral artery occlusion plus 10 h of reperfusion is influenced by the degree of cerebral microcirculatory disturbance. Quantitative monitoring over time of the disturbances of cerebral microcirculation in ischemic brain areas and evaluation of cytotoxic edema associated with perfusion deficits was achieved by using two noninvasive magnetic resonance imaging techniques: (a) high-speed echo planar imaging combined with a bolus of magnetic susceptibility contrast agent; and (b) diffusion-weighted imaging. Apoptosis-positive cells were counted in anatomic areas with different severity of ischemic injury characterized by magnetic resonance imaging, triphenyltetrazolium chloride, and hemotoxylin and eosin staining. The number of apoptosis-positive cells was significantly higher in anatomic areas with severe perfusion deficits during occlusion and detectable histologic changes 10 h after reperfusion. In contrast, in areas where perfusion was reduced but maintained during occlusion there were no detectable histological changes and significantly fewer apoptosis-positive cells. A similar number of cells that undergo apoptosis were shown in regions with transient or prolonged subtotal perfusion deficits. These results suggest that the apoptotic process is induced in the ischemic core and contributes significantly in the degeneration of neurons associated with transient ischemia.

Full Text

The Full Text of this article is available as a PDF (374.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bederson J. B., Pitts L. H., Germano S. M., Nishimura M. C., Davis R. L., Bartkowski H. M. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986 Nov-Dec;17(6):1304–1308. doi: 10.1161/01.str.17.6.1304. [DOI] [PubMed] [Google Scholar]
  2. Belliveau J. W., Rosen B. R., Kantor H. L., Rzedzian R. R., Kennedy D. N., McKinstry R. C., Vevea J. M., Cohen M. S., Pykett I. L., Brady T. J. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med. 1990 Jun;14(3):538–546. doi: 10.1002/mrm.1910140311. [DOI] [PubMed] [Google Scholar]
  3. Benveniste H., Hedlund L. W., Johnson G. A. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke. 1992 May;23(5):746–754. doi: 10.1161/01.str.23.5.746. [DOI] [PubMed] [Google Scholar]
  4. Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7162–7166. doi: 10.1073/pnas.92.16.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Charriaut-Marlangue C., Margaill I., Plotkine M., Ben-Ari Y. Early endonuclease activation following reversible focal ischemia in the rat brain. J Cereb Blood Flow Metab. 1995 May;15(3):385–388. doi: 10.1038/jcbfm.1995.48. [DOI] [PubMed] [Google Scholar]
  6. Chen J., Graham S. H., Chan P. H., Lan J., Zhou R. L., Simon R. P. bcl-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport. 1995 Jan 26;6(2):394–398. doi: 10.1097/00001756-199501000-00040. [DOI] [PubMed] [Google Scholar]
  7. Coyle J. T., Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993 Oct 29;262(5134):689–695. doi: 10.1126/science.7901908. [DOI] [PubMed] [Google Scholar]
  8. Dettmers C., Hartmann A., Rommel T., Krämer S., Pappata S., Young A., Hartmann S., Zierz S., MacKenzie E. T., Baron J. C. Immersion and perfusion staining with 2,3,5-triphenyltetrazolium chloride (TTC) compared to mitochondrial enzymes 6 hours after MCA-occlusion in primates. Neurol Res. 1994 Jun;16(3):205–208. doi: 10.1080/01616412.1994.11740228. [DOI] [PubMed] [Google Scholar]
  9. Du C., Hu R., Csernansky C. A., Hsu C. Y., Choi D. W. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab. 1996 Mar;16(2):195–201. doi: 10.1097/00004647-199603000-00003. [DOI] [PubMed] [Google Scholar]
  10. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  12. Hossmann K. A. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994 Oct;36(4):557–565. doi: 10.1002/ana.410360404. [DOI] [PubMed] [Google Scholar]
  13. Héron A., Pollard H., Dessi F., Moreau J., Lasbennes F., Ben-Ari Y., Charriaut-Marlangue C. Regional variability in DNA fragmentation after global ischemia evidenced by combined histological and gel electrophoresis observations in the rat brain. J Neurochem. 1993 Nov;61(5):1973–1976. doi: 10.1111/j.1471-4159.1993.tb09843.x. [DOI] [PubMed] [Google Scholar]
  14. Kiyota Y., Pahlmark K., Memezawa H., Smith M. L., Siesjö B. K. Free radicals and brain damage due to transient middle cerebral artery occlusion: the effect of dimethylthiourea. Exp Brain Res. 1993;95(3):388–396. doi: 10.1007/BF00227131. [DOI] [PubMed] [Google Scholar]
  15. Kucharczyk J., Vexler Z. S., Roberts T. P., Asgari H. S., Mintorovitch J., Derugin N., Watson A. D., Moseley M. E. Echo-planar perfusion-sensitive MR imaging of acute cerebral ischemia. Radiology. 1993 Sep;188(3):711–717. doi: 10.1148/radiology.188.3.8351338. [DOI] [PubMed] [Google Scholar]
  16. Le Bihan D. Magnetic resonance imaging of perfusion. Magn Reson Med. 1990 May;14(2):283–292. doi: 10.1002/mrm.1910140213. [DOI] [PubMed] [Google Scholar]
  17. Li Y., Chopp M., Jiang N., Yao F., Zaloga C. Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1995 May;15(3):389–397. doi: 10.1038/jcbfm.1995.49. [DOI] [PubMed] [Google Scholar]
  18. Li Y., Chopp M., Jiang N., Zhang Z. G., Zaloga C. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke. 1995 Jul;26(7):1252–1258. doi: 10.1161/01.str.26.7.1252. [DOI] [PubMed] [Google Scholar]
  19. Linnik M. D., Zahos P., Geschwind M. D., Federoff H. J. Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke. 1995 Sep;26(9):1670–1675. doi: 10.1161/01.str.26.9.1670. [DOI] [PubMed] [Google Scholar]
  20. Linnik M. D., Zobrist R. H., Hatfield M. D. Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Stroke. 1993 Dec;24(12):2002–2009. doi: 10.1161/01.str.24.12.2002. [DOI] [PubMed] [Google Scholar]
  21. MacManus J. P., Buchan A. M., Hill I. E., Rasquinha I., Preston E. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett. 1993 Dec 24;164(1-2):89–92. doi: 10.1016/0304-3940(93)90864-h. [DOI] [PubMed] [Google Scholar]
  22. Mies G., Kohno K., Hossmann K. A. MK-801, a glutamate antagonist, lowers flow threshold for inhibition of protein synthesis after middle cerebral artery occlusion of rat. Neurosci Lett. 1993 May 28;155(1):65–68. doi: 10.1016/0304-3940(93)90674-a. [DOI] [PubMed] [Google Scholar]
  23. Moseley M. E., Cohen Y., Mintorovitch J., Chileuitt L., Shimizu H., Kucharczyk J., Wendland M. F., Weinstein P. R. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990 May;14(2):330–346. doi: 10.1002/mrm.1910140218. [DOI] [PubMed] [Google Scholar]
  24. Moseley M. E., Kucharczyk J., Mintorovitch J., Cohen Y., Kurhanewicz J., Derugin N., Asgari H., Norman D. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol. 1990 May;11(3):423–429. [PMC free article] [PubMed] [Google Scholar]
  25. Portera-Cailliau C., Hedreen J. C., Price D. L., Koliatsos V. E. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J Neurosci. 1995 May;15(5 Pt 2):3775–3787. doi: 10.1523/JNEUROSCI.15-05-03775.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y., Jacobson M. D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993 Oct 29;262(5134):695–700. doi: 10.1126/science.8235590. [DOI] [PubMed] [Google Scholar]
  27. Roberts T. P., Vexler Z. S., Vexler V., Derugin N., Kucharczyk J. Sensitivity of high-speed "perfusion-sensitive" magnetic resonance imaging to mild cerebral ischemia. Eur Radiol. 1996;6(5):645–649. doi: 10.1007/BF00187665. [DOI] [PubMed] [Google Scholar]
  28. Roberts T. P., Vexler Z., Derugin N., Moseley M. E., Kucharczyk J. High-speed MR imaging of ischemic brain injury following stenosis of the middle cerebral artery. J Cereb Blood Flow Metab. 1993 Nov;13(6):940–946. doi: 10.1038/jcbfm.1993.117. [DOI] [PubMed] [Google Scholar]
  29. Rosen B. R., Belliveau J. W., Chien D. Perfusion imaging by nuclear magnetic resonance. Magn Reson Q. 1989 Oct;5(4):263–281. [PubMed] [Google Scholar]
  30. Steller H. Mechanisms and genes of cellular suicide. Science. 1995 Mar 10;267(5203):1445–1449. doi: 10.1126/science.7878463. [DOI] [PubMed] [Google Scholar]
  31. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  32. Tominaga T., Kure S., Narisawa K., Yoshimoto T. Endonuclease activation following focal ischemic injury in the rat brain. Brain Res. 1993 Apr 9;608(1):21–26. doi: 10.1016/0006-8993(93)90768-i. [DOI] [PubMed] [Google Scholar]
  33. Vexler Z. S., Ayus J. C., Roberts T. P., Fraser C. L., Kucharczyk J., Arieff A. I. Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals. J Clin Invest. 1994 Jan;93(1):256–264. doi: 10.1172/JCI116953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vexler Z. S., Roberts T. P., Derugin N., Kozniewska E., Arieff A. I., Kucharczyk J. Mechanisms of brain injury associated with partial and complete occlusion of the MCA in cat. Acta Neurochir Suppl (Wien) 1994;60:211–215. doi: 10.1007/978-3-7091-9334-1_57. [DOI] [PubMed] [Google Scholar]
  35. Villringer A., Rosen B. R., Belliveau J. W., Ackerman J. L., Lauffer R. B., Buxton R. B., Chao Y. S., Wedeen V. J., Brady T. J. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med. 1988 Feb;6(2):164–174. doi: 10.1002/mrm.1910060205. [DOI] [PubMed] [Google Scholar]
  36. Yao R., Cooper G. M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995 Mar 31;267(5206):2003–2006. doi: 10.1126/science.7701324. [DOI] [PubMed] [Google Scholar]
  37. van Bruggen N., Cullen B. M., King M. D., Doran M., Williams S. R., Gadian D. G., Cremer J. E. T2- and diffusion-weighted magnetic resonance imaging of a focal ischemic lesion in rat brain. Stroke. 1992 Apr;23(4):576–582. doi: 10.1161/01.str.23.4.576. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES