Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 1;99(7):1506–1515. doi: 10.1172/JCI119313

Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis.

H Tsukaguchi 1, C Shayakul 1, U V Berger 1, T Tokui 1, D Brown 1, M A Hediger 1
PMCID: PMC507970  PMID: 9119994

Abstract

Urea transport in the kidney plays an important role in urinary concentration and nitrogen balance. Recently, three types of urea transporters have been cloned, UT1 and UT2 from rat and rabbit kidney and HUT11 from human bone marrow. To elucidate the physiological role of the latter urea transporter, we have isolated the rat homologue (UT3) of HUT11 and studied its distribution of expression and functional characteristics. UT3 cDNA encodes a 384 amino acid residue protein, which has 80% identity to the human HUT11 and 62% identity to rat UT2. Functional expression in Xenopus oocytes induced a large (approximately 50-fold) increase in the uptake of urea compared with water-injected oocytes. The uptake was inhibited by phloretin (0.75 mM) and pCMBS (0.5 mM) (55 and 32% inhibition, respectively). Northern analysis gave a single band of 3.8 kb in kidney inner and outer medulla, testis, brain, bone marrow, spleen, thymus, and lung. In situ hybridization of rat kidney revealed that UT3 mRNA is expressed in the inner stripe of the outer medulla, inner medulla, the papillary surface epithelium, and the transitional urinary epithelium of urinary tracts. Co-staining experiments using antibody against von Willebrand factor showed that UT3 mRNA in the inner stripe of the outer medulla is expressed in descending vasa recta. These data suggest that UT3 in kidney is involved in counter current exchange between ascending and descending vasa recta, to enhance the cortico-papillary osmolality gradient. In situ hybridization of testis revealed that UT3 is located in Sertoli cells of seminiferous tubules. The signal was only detected in Sertoli cells associated with the early stages of spermatocyte development, suggesting that urea may play a role in spermatogenesis.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Brown D., Nielsen S. Aquaporin water channels: unanswered questions and unresolved controversies. Curr Opin Cell Biol. 1995 Aug;7(4):472–483. doi: 10.1016/0955-0674(95)80003-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnt-Ramos L. R., O'Brien W. E., Vincent S. R. Immunohistochemical localization of argininosuccinate synthetase in the rat brain in relation to nitric oxide synthase-containing neurons. Neuroscience. 1992 Dec;51(4):773–789. doi: 10.1016/0306-4522(92)90519-8. [DOI] [PubMed] [Google Scholar]
  3. Bonventre J. V., Roman R. J., Lechene C. Effect of urea concentration of pelvic fluid on renal concentrating ability. Am J Physiol. 1980 Dec;239(6):F609–F618. doi: 10.1152/ajprenal.1980.239.6.F609. [DOI] [PubMed] [Google Scholar]
  4. Buniatian H. C., Davtian M. A. Urea synthesis in brain. J Neurochem. 1966 Aug;13(8):743–753. doi: 10.1111/j.1471-4159.1966.tb09881.x. [DOI] [PubMed] [Google Scholar]
  5. Chou C. L., Sands J. M., Nonoguchi H., Knepper M. A. Concentration dependence of urea and thiourea transport in rat inner medullary collecting duct. Am J Physiol. 1990 Mar;258(3 Pt 2):F486–F494. doi: 10.1152/ajprenal.1990.258.3.F486. [DOI] [PubMed] [Google Scholar]
  6. Effros R. M., Jacobs E., Hacker A., Ozker K., Murphy C. Reversible inhibition of urea exchange in rat hepatocytes. J Clin Invest. 1993 Jun;91(6):2822–2828. doi: 10.1172/JCI116525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fushimi K., Uchida S., Hara Y., Hirata Y., Marumo F., Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993 Feb 11;361(6412):549–552. doi: 10.1038/361549a0. [DOI] [PubMed] [Google Scholar]
  8. Hasegawa H., Verkman A. S. Functional expression of cAMP-dependent and independent urea transporters in Xenopus oocytes. Am J Physiol. 1993 Aug;265(2 Pt 1):C514–C520. doi: 10.1152/ajpcell.1993.265.2.C514. [DOI] [PubMed] [Google Scholar]
  9. Hediger M. A., Smith C. P., You G., Lee W. S., Kanai Y., Shayakul C. Structure, regulation and physiological roles of urea transporters. Kidney Int. 1996 Jun;49(6):1615–1623. doi: 10.1038/ki.1996.235. [DOI] [PubMed] [Google Scholar]
  10. Howards S. S., Turner T. T. The blood-testis barrier: a morphologic or physiologic phenomenon? Trans Am Assoc Genitourin Surg. 1978;70:74–75. [PubMed] [Google Scholar]
  11. Knepper M. A., Roch-Ramel F. Pathways of urea transport in the mammalian kidney. Kidney Int. 1987 Feb;31(2):629–633. doi: 10.1038/ki.1987.44. [DOI] [PubMed] [Google Scholar]
  12. Knepper M. A., Star R. A. The vasopressin-regulated urea transporter in renal inner medullary collecting duct. Am J Physiol. 1990 Sep;259(3 Pt 2):F393–F401. doi: 10.1152/ajprenal.1990.259.3.F393. [DOI] [PubMed] [Google Scholar]
  13. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  14. Krawetz S. A., Dixon G. H. Sequence similarities of the protamine genes: implications for regulation and evolution. J Mol Evol. 1988;27(4):291–297. doi: 10.1007/BF02101190. [DOI] [PubMed] [Google Scholar]
  15. Macey R. I., Yousef L. W. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol. 1988 May;254(5 Pt 1):C669–C674. doi: 10.1152/ajpcell.1988.254.5.C669. [DOI] [PubMed] [Google Scholar]
  16. Nielsen S., Terris J., Smith C. P., Hediger M. A., Ecelbarger C. A., Knepper M. A. Cellular and subcellular localization of the vasopressin- regulated urea transporter in rat kidney. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5495–5500. doi: 10.1073/pnas.93.11.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olives B., Neau P., Bailly P., Hediger M. A., Rousselet G., Cartron J. P., Ripoche P. Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem. 1994 Dec 16;269(50):31649–31652. [PubMed] [Google Scholar]
  18. Olivès B., Mattei M. G., Huet M., Neau P., Martial S., Cartron J. P., Bailly P. Kidd blood group and urea transport function of human erythrocytes are carried by the same protein. J Biol Chem. 1995 Jun 30;270(26):15607–15610. doi: 10.1074/jbc.270.26.15607. [DOI] [PubMed] [Google Scholar]
  19. Pallone T. L. Characterization of the urea transporter in outer medullary descending vasa recta. Am J Physiol. 1994 Jul;267(1 Pt 2):R260–R267. doi: 10.1152/ajpregu.1994.267.1.R260. [DOI] [PubMed] [Google Scholar]
  20. Pallone T. L., Nielsen S., Silldorff E. P., Yang S. Diffusive transport of solute in the rat medullary microcirculation. Am J Physiol. 1995 Jul;269(1 Pt 2):F55–F63. doi: 10.1152/ajprenal.1995.269.1.F55. [DOI] [PubMed] [Google Scholar]
  21. Pallone T. L., Work J., Myers R. L., Jamison R. L. Transport of sodium and urea in outer medullary descending vasa recta. J Clin Invest. 1994 Jan;93(1):212–222. doi: 10.1172/JCI116948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Piperno G., LeDizet M., Chang X. J. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol. 1987 Feb;104(2):289–302. doi: 10.1083/jcb.104.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Promeneur D., Rousselet G., Bankir L., Bailly P., Cartron J. P., Ripoche P., Trinh-Trang-Tan M. M. Evidence for distinct vascular and tubular urea transporters in the rat kidney. J Am Soc Nephrol. 1996 Jun;7(6):852–860. doi: 10.1681/ASN.V76852. [DOI] [PubMed] [Google Scholar]
  24. Sabolić I., Valenti G., Verbavatz J. M., Van Hoek A. N., Verkman A. S., Ausiello D. A., Brown D. Localization of the CHIP28 water channel in rat kidney. Am J Physiol. 1992 Dec;263(6 Pt 1):C1225–C1233. doi: 10.1152/ajpcell.1992.263.6.C1225. [DOI] [PubMed] [Google Scholar]
  25. Sands J. M., Knepper M. A. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest. 1987 Jan;79(1):138–147. doi: 10.1172/JCI112774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sands J. M., Kokko J. P. Countercurrent system. Kidney Int. 1990 Oct;38(4):695–699. doi: 10.1038/ki.1990.261. [DOI] [PubMed] [Google Scholar]
  27. Schaeren-Wiemers N., Gerfin-Moser A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry. 1993 Dec;100(6):431–440. doi: 10.1007/BF00267823. [DOI] [PubMed] [Google Scholar]
  28. Shayakul C., Steel A., Hediger M. A. Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J Clin Invest. 1996 Dec 1;98(11):2580–2587. doi: 10.1172/JCI119077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  30. Walser B. L., Yagil Y., Jamison R. L. Urea flux in the ureter. Am J Physiol. 1988 Aug;255(2 Pt 2):F244–F249. doi: 10.1152/ajprenal.1988.255.2.F244. [DOI] [PubMed] [Google Scholar]
  31. You G., Smith C. P., Kanai Y., Lee W. S., Stelzner M., Hediger M. A. Cloning and characterization of the vasopressin-regulated urea transporter. Nature. 1993 Oct 28;365(6449):844–847. doi: 10.1038/365844a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES