Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 1;99(7):1546–1554. doi: 10.1172/JCI119317

The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection.

K Aupeix 1, B Hugel 1, T Martin 1, P Bischoff 1, H Lill 1, J L Pasquali 1, J M Freyssinet 1
PMCID: PMC507974  PMID: 9119998

Abstract

The plasma membrane remodeling, including the early transverse redistribution of phosphatidylserine, is a general feature occurring in cells in which a death program has been induced. In most cases, studies of this kind have focused mainly on cells. In this study, we report a clear correlation between the degree of apoptosis induced by a variety of agents in several types of cultured cells and the amount of shed membrane microparticles captured in the corresponding supernatants by insolubilized annexin V, a protein showing a strong affinity for phosphatidylserine. Such particles carry membrane antigens specific of the cells they stem from, and through which capture is also feasible. Homologous circulating microparticles were captured in peripheral blood from individuals with HIV-1 infection. A substantial proportion bore CD4 antigen. In some cases, CD4+ particles could be detected even in the absence of circulating CD4+ T cells, testifying to the presence of such resident cells in lymphoid tissues. These results suggest that shed membrane particles are one of the hallmarks of programmed cell death, of particular interest when the corresponding cells are hardly accessible.

Full Text

The Full Text of this article is available as a PDF (214.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M., Williamson P., Schlegel R. A. Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8067–8071. doi: 10.1073/pnas.85.21.8067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aloia R. C., Tian H., Jensen F. C. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5181–5185. doi: 10.1073/pnas.90.11.5181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ameisen J. C. Programmed cell death (apoptosis) and cell survival regulation: relevance to AIDS and cancer. AIDS. 1994 Sep;8(9):1197–1213. doi: 10.1097/00002030-199409000-00001. [DOI] [PubMed] [Google Scholar]
  4. Andree H. A., Reutelingsperger C. P., Hauptmann R., Hemker H. C., Hermens W. T., Willems G. M. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem. 1990 Mar 25;265(9):4923–4928. [PubMed] [Google Scholar]
  5. Aupeix K., Toti F., Satta N., Bischoff P., Freyssinet J. M. Oyxsterols induce membrane procoagulant activity in monocytic THP-1 cells. Biochem J. 1996 Mar 15;314(Pt 3):1027–1033. doi: 10.1042/bj3141027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aupeix K., Weltin D., Mejia J. E., Christ M., Marchal J., Freyssinet J. M., Bischoff P. Oxysterol-induced apoptosis in human monocytic cell lines. Immunobiology. 1995 Nov;194(4-5):415–428. doi: 10.1016/S0171-2985(11)80108-7. [DOI] [PubMed] [Google Scholar]
  7. Bevers E. M., Wiedmer T., Comfurius P., Shattil S. J., Weiss H. J., Zwaal R. F., Sims P. J. Defective Ca(2+)-induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome. Blood. 1992 Jan 15;79(2):380–388. [PubMed] [Google Scholar]
  8. Casciola-Rosen L. A., Anhalt G., Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994 Apr 1;179(4):1317–1330. doi: 10.1084/jem.179.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Casciola-Rosen L., Rosen A., Petri M., Schlissel M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1624–1629. doi: 10.1073/pnas.93.4.1624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Christ M., Luu B., Mejia J. E., Moosbrugger I., Bischoff P. Apoptosis induced by oxysterols in murine lymphoma cells and in normal thymocytes. Immunology. 1993 Mar;78(3):455–460. [PMC free article] [PubMed] [Google Scholar]
  11. Dachary-Prigent J., Freyssinet J. M., Pasquet J. M., Carron J. C., Nurden A. T. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood. 1993 May 15;81(10):2554–2565. [PubMed] [Google Scholar]
  12. Devaux P. F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 1991 Feb 5;30(5):1163–1173. doi: 10.1021/bi00219a001. [DOI] [PubMed] [Google Scholar]
  13. Dubrez L., Goldwasser F., Genne P., Pommier Y., Solary E. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia. 1995 Jun;9(6):1013–1024. [PubMed] [Google Scholar]
  14. Fadok V. A., Voelker D. R., Campbell P. A., Cohen J. J., Bratton D. L., Henson P. M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992 Apr 1;148(7):2207–2216. [PubMed] [Google Scholar]
  15. Finkel T. H., Tudor-Williams G., Banda N. K., Cotton M. F., Curiel T., Monks C., Baba T. W., Ruprecht R. M., Kupfer A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med. 1995 Feb;1(2):129–134. doi: 10.1038/nm0295-129. [DOI] [PubMed] [Google Scholar]
  16. Fourcade O., Simon M. F., Viodé C., Rugani N., Leballe F., Ragab A., Fournié B., Sarda L., Chap H. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995 Mar 24;80(6):919–927. doi: 10.1016/0092-8674(95)90295-3. [DOI] [PubMed] [Google Scholar]
  17. Greenspan H. C., Aruoma O. I. Oxidative stress and apoptosis in HIV infection: a role for plant-derived metabolites with synergistic antioxidant activity. Immunol Today. 1994 May;15(5):209–213. doi: 10.1016/0167-5699(94)90245-3. [DOI] [PubMed] [Google Scholar]
  18. Groux H., Torpier G., Monté D., Mouton Y., Capron A., Ameisen J. C. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med. 1992 Feb 1;175(2):331–340. doi: 10.1084/jem.175.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horstman L. L., Jy W., Schultz D. R., Mao W. W., Ahn Y. S. Complement-mediated fragmentation and lysis of opsonized platelets: ender differences in sensitivity. J Lab Clin Med. 1994 Apr;123(4):515–525. [PubMed] [Google Scholar]
  20. Imai H., Werthessen N. T., Subramanyam V., LeQuesne P. W., Soloway A. H., Kanisawa M. Angiotoxicity of oxygenated sterols and possible precursors. Science. 1980 Feb 8;207(4431):651–653. doi: 10.1126/science.7352277. [DOI] [PubMed] [Google Scholar]
  21. Kojima H., Newton-Nash D., Weiss H. J., Zhao J., Sims P. J., Wiedmer T. Production and characterization of transformed B-lymphocytes expressing the membrane defect of Scott syndrome. J Clin Invest. 1994 Dec;94(6):2237–2244. doi: 10.1172/JCI117586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kornbluth R. S. The immunological potential of apoptotic debris produced by tumor cells and during HIV infection. Immunol Lett. 1994 Dec;43(1-2):125–132. doi: 10.1016/0165-2478(94)00149-9. [DOI] [PubMed] [Google Scholar]
  23. Larrick J. W., Wright S. C. Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J. 1990 Nov;4(14):3215–3223. doi: 10.1096/fasebj.4.14.2172061. [DOI] [PubMed] [Google Scholar]
  24. Laurence J., Mitra D., Steiner M., Lynch D. H., Siegal F. P., Staiano-Coico L. Apoptotic depletion of CD4+ T cells in idiopathic CD4+ T lymphocytopenia. J Clin Invest. 1996 Feb 1;97(3):672–680. doi: 10.1172/JCI118464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lewis D. E., Tang D. S., Adu-Oppong A., Schober W., Rodgers J. R. Anergy and apoptosis in CD8+ T cells from HIV-infected persons. J Immunol. 1994 Jul 1;153(1):412–420. [PubMed] [Google Scholar]
  26. Lizard G., Deckert V., Dubrez L., Moisant M., Gambert P., Lagrost L. Induction of apoptosis in endothelial cells treated with cholesterol oxides. Am J Pathol. 1996 May;148(5):1625–1638. [PMC free article] [PubMed] [Google Scholar]
  27. Luciani M. F., Chimini G. The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J. 1996 Jan 15;15(2):226–235. [PMC free article] [PubMed] [Google Scholar]
  28. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3–15. [PMC free article] [PubMed] [Google Scholar]
  29. Malorni W., Rivabene R., Santini M. T., Paradisi S., Iosi F., Donelli G. Down-modulation of CD4 antigen during programmed cell death in U937 cells. FEBS Lett. 1993 Dec 27;336(2):335–339. doi: 10.1016/0014-5793(93)80832-f. [DOI] [PubMed] [Google Scholar]
  30. Martin S. J., Green D. R. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995 Aug 11;82(3):349–352. doi: 10.1016/0092-8674(95)90422-0. [DOI] [PubMed] [Google Scholar]
  31. Martin S. J., Lennon S. V., Bonham A. M., Cotter T. G. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol. 1990 Sep 15;145(6):1859–1867. [PubMed] [Google Scholar]
  32. Martin S. J., Reutelingsperger C. P., McGahon A. J., Rader J. A., van Schie R. C., LaFace D. M., Green D. R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995 Nov 1;182(5):1545–1556. doi: 10.1084/jem.182.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mellors J. W., Rinaldo C. R., Jr, Gupta P., White R. M., Todd J. A., Kingsley L. A. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996 May 24;272(5265):1167–1170. doi: 10.1126/science.272.5265.1167. [DOI] [PubMed] [Google Scholar]
  34. Meyaard L., Otto S. A., Jonker R. R., Mijnster M. J., Keet R. P., Miedema F. Programmed death of T cells in HIV-1 infection. Science. 1992 Jul 10;257(5067):217–219. doi: 10.1126/science.1352911. [DOI] [PubMed] [Google Scholar]
  35. Munn D. H., Beall A. C., Song D., Wrenn R. W., Throckmorton D. C. Activation-induced apoptosis in human macrophages: developmental regulation of a novel cell death pathway by macrophage colony-stimulating factor and interferon gamma. J Exp Med. 1995 Jan 1;181(1):127–136. doi: 10.1084/jem.181.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Neuenschwander P. F., Bianco-Fisher E., Rezaie A. R., Morrissey J. H. Phosphatidylethanolamine augments factor VIIa-tissue factor activity: enhancement of sensitivity to phosphatidylserine. Biochemistry. 1995 Oct 31;34(43):13988–13993. doi: 10.1021/bi00043a004. [DOI] [PubMed] [Google Scholar]
  37. Oyaizu N., McCloskey T. W., Coronesi M., Chirmule N., Kalyanaraman V. S., Pahwa S. Accelerated apoptosis in peripheral blood mononuclear cells (PBMCs) from human immunodeficiency virus type-1 infected patients and in CD4 cross-linked PBMCs from normal individuals. Blood. 1993 Dec 1;82(11):3392–3400. [PubMed] [Google Scholar]
  38. Pigault C., Follenius-Wund A., Schmutz M., Freyssinet J. M., Brisson A. Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J Mol Biol. 1994 Feb 11;236(1):199–208. doi: 10.1006/jmbi.1994.1129. [DOI] [PubMed] [Google Scholar]
  39. Ramprasad M. P., Fischer W., Witztum J. L., Sambrano G. R., Quehenberger O., Steinberg D. The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9580–9584. doi: 10.1073/pnas.92.21.9580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ravanat C., Torbet J., Freyssinet J. M. A neutron solution scattering study of the structure of annexin-V and its binding to lipid vesicles. J Mol Biol. 1992 Aug 20;226(4):1271–1278. doi: 10.1016/0022-2836(92)91066-x. [DOI] [PubMed] [Google Scholar]
  41. Satta N., Toti F., Feugeas O., Bohbot A., Dachary-Prigent J., Eschwège V., Hedman H., Freyssinet J. M. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol. 1994 Oct 1;153(7):3245–3255. [PubMed] [Google Scholar]
  42. Silvestris F., Frassanito M. A., Cafforio P., Potenza D., Di Loreto M., Tucci M., Grizzuti M. A., Nico B., Dammacco F. Antiphosphatidylserine antibodies in human immunodeficiency virus-1 patients with evidence of T-cell apoptosis and mediate antibody-dependent cellular cytotoxicity. Blood. 1996 Jun 15;87(12):5185–5195. [PubMed] [Google Scholar]
  43. Smit J. J., Schinkel A. H., Oude Elferink R. P., Groen A. K., Wagenaar E., van Deemter L., Mol C. A., Ottenhoff R., van der Lugt N. M., van Roon M. A. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993 Nov 5;75(3):451–462. doi: 10.1016/0092-8674(93)90380-9. [DOI] [PubMed] [Google Scholar]
  44. Tabibzadeh S. S., Kong Q. F., Kapur S. Passive acquisition of leukocyte proteins is associated with changes in phosphorylation of cellular proteins and cell-cell adhesion properties. Am J Pathol. 1994 Oct;145(4):930–940. [PMC free article] [PubMed] [Google Scholar]
  45. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  46. Toti F., Satta N., Fressinaud E., Meyer D., Freyssinet J. M. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood. 1996 Feb 15;87(4):1409–1415. [PubMed] [Google Scholar]
  47. Verhoven B., Schlegel R. A., Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995 Nov 1;182(5):1597–1601. doi: 10.1084/jem.182.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weiss H. J. Scott syndrome: a disorder of platelet coagulant activity. Semin Hematol. 1994 Oct;31(4):312–319. [PubMed] [Google Scholar]
  49. Zwaal R. F., Comfurius P., Bevers E. M. Mechanism and function of changes in membrane-phospholipid asymmetry in platelets and erythrocytes. Biochem Soc Trans. 1993 May;21(2):248–253. doi: 10.1042/bst0210248. [DOI] [PubMed] [Google Scholar]
  50. van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., van Meer G. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell. 1996 Nov 1;87(3):507–517. doi: 10.1016/s0092-8674(00)81370-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES