Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 1;99(7):1614–1627. doi: 10.1172/JCI119324

Molecular mechanisms and selective influences that shape the kappa gene repertoire of IgM+ B cells.

S J Foster 1, H P Brezinschek 1, R I Brezinschek 1, P E Lipsky 1
PMCID: PMC507981  PMID: 9120005

Abstract

To analyze the human kappa chain repertoire and the influences that shape it, a single cell PCR technique was used that amplified Vkappa Jkappa rearrangements from genomic DNA of individual human B cells. More than 350 productive and 250 nonproductive Vkappa Jkappa rearrangements were sequenced. Nearly every functional Vkappa gene segment was used in rearrangements, although six Vkappa gene segments, A27, L2, L6, L12a, A17, and O12/O2 were used preferentially. Of these, A27, L2, L6, and L12a showed evidence of positive selection based on the variable region and not CDR3, whereas A17 was overrepresented because of a rearrangement bias based on molecular mechanisms. Utilization of Jkappa segments was also nonrandom, with Jkappa1 and Jkappa2 being overrepresented and Jkappa3 and Jkappa5 underrepresented in the nonproductive repertoire, implying a molecular basis for the bias. In B cells with two Vkappa Jkappa rearrangements, marked differences were noted in the Vkappa segments used for the initial and subsequent rearrangements, whereas Jkappa segments were used comparably. Junctional diversity was generated by n-nucleotide addition in 60% and by exonuclease trimming in 75% of the Vkappa Jkappa rearrangements analyzed. Despite this large degree of diversity, a strict CDR3 length was maintained in both productive and nonproductive rearrangements. More than 23% of the productive rearrangements, but only 7% of the nonproductive rearrangements contained somatic hypermutations. Mutations were significantly more frequent in Vkappa sequences derived from CD5- as compared with CD5+ B cells. These results document that the gene segment utilization within the Vkappa repertoire is biased by both intrinsic molecular processes as well as selection after light chain expression. Moreover, IgM+ memory cells with highly mutated kappa genes reside within the CD5- but not the CD5+ B cell compartment.

Full Text

The Full Text of this article is available as a PDF (242.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Oltz E. M., Young F., Gorman J., Taccioli G., Chen J. VDJ recombination. Immunol Today. 1992 Aug;13(8):306–314. doi: 10.1016/0167-5699(92)90043-7. [DOI] [PubMed] [Google Scholar]
  2. Berberian L., Goodglick L., Kipps T. J., Braun J. Immunoglobulin VH3 gene products: natural ligands for HIV gp120. Science. 1993 Sep 17;261(5128):1588–1591. doi: 10.1126/science.7690497. [DOI] [PubMed] [Google Scholar]
  3. Björck L. Protein L. A novel bacterial cell wall protein with affinity for Ig L chains. J Immunol. 1988 Feb 15;140(4):1194–1197. [PubMed] [Google Scholar]
  4. Brezinschek H. P., Brezinschek R. I., Lipsky P. E. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol. 1995 Jul 1;155(1):190–202. [PubMed] [Google Scholar]
  5. Bridges S. L., Jr, Lee S. K., Johnson M. L., Lavelle J. C., Fowler P. G., Koopman W. J., Schroeder H. W., Jr Somatic mutation and CDR3 lengths of immunoglobulin kappa light chains expressed in patients with rheumatoid arthritis and in normal individuals. J Clin Invest. 1995 Aug;96(2):831–841. doi: 10.1172/JCI118129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox J. P., Tomlinson I. M., Winter G. A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur J Immunol. 1994 Apr;24(4):827–836. doi: 10.1002/eji.1830240409. [DOI] [PubMed] [Google Scholar]
  7. Domiati-Saad R., Attrep J. F., Brezinschek H. P., Cherrie A. H., Karp D. R., Lipsky P. E. Staphylococcal enterotoxin D functions as a human B cell superantigen by rescuing VH4-expressing B cells from apoptosis. J Immunol. 1996 May 15;156(10):3608–3620. [PubMed] [Google Scholar]
  8. Ebeling S. B., Schutte M. E., Logtenberg T. Peripheral human CD5+ and CD5- B cells may express somatically mutated VH5- and VH6-encoded IgM receptors. J Immunol. 1993 Dec 15;151(12):6891–6899. [PubMed] [Google Scholar]
  9. Feeney A. J., Victor K. D., Vu K., Nadel B., Chukwuocha R. U. Influence of the V(D)J recombination mechanism on the formation of the primary T and B cell repertoires. Semin Immunol. 1994 Jun;6(3):155–163. doi: 10.1006/smim.1994.1021. [DOI] [PubMed] [Google Scholar]
  10. Gauss G. H., Lieber M. R. The basis for the mechanistic bias for deletional over inversional V(D)J recombination. Genes Dev. 1992 Aug;6(8):1553–1561. doi: 10.1101/gad.6.8.1553. [DOI] [PubMed] [Google Scholar]
  11. Giachino C., Padovan E., Lanzavecchia A. kappa+lambda+ dual receptor B cells are present in the human peripheral repertoire. J Exp Med. 1995 Mar 1;181(3):1245–1250. doi: 10.1084/jem.181.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Han S., Zheng B., Schatz D. G., Spanopoulou E., Kelsoe G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science. 1996 Dec 20;274(5295):2094–2097. doi: 10.1126/science.274.5295.2094. [DOI] [PubMed] [Google Scholar]
  13. Harada K., Yamagishi H. Lack of feedback inhibition of V kappa gene rearrangement by productively rearranged alleles. J Exp Med. 1991 Feb 1;173(2):409–415. doi: 10.1084/jem.173.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hardy R. R., Hayakawa K. CD5 B cells, a fetal B cell lineage. Adv Immunol. 1994;55:297–339. doi: 10.1016/s0065-2776(08)60512-x. [DOI] [PubMed] [Google Scholar]
  15. Huber C., Klobeck H. G., Zachau H. G. Ongoing V kappa-J kappa recombination after formation of a productive V kappa-J kappa coding joint. Eur J Immunol. 1992 Jun;22(6):1561–1565. doi: 10.1002/eji.1830220632. [DOI] [PubMed] [Google Scholar]
  16. Jacob J., Przylepa J., Miller C., Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J Exp Med. 1993 Oct 1;178(4):1293–1307. doi: 10.1084/jem.178.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jelinek D. F., Lipsky P. E. Comparative activation requirements of human peripheral blood, spleen, and lymph node B cells. J Immunol. 1987 Aug 15;139(4):1005–1013. [PubMed] [Google Scholar]
  18. Kelsoe G. Life and death in germinal centers (redux). Immunity. 1996 Feb;4(2):107–111. doi: 10.1016/s1074-7613(00)80675-5. [DOI] [PubMed] [Google Scholar]
  19. Kipps T. J. The CD5 B cell. Adv Immunol. 1989;47:117–185. doi: 10.1016/s0065-2776(08)60663-x. [DOI] [PubMed] [Google Scholar]
  20. Klein U., Küppers R., Rajewsky K. Human IgM+IgD+ B cells, the major B cell subset in the peripheral blood, express V kappa genes with no or little somatic mutation throughout life. Eur J Immunol. 1993 Dec;23(12):3272–3277. doi: 10.1002/eji.1830231232. [DOI] [PubMed] [Google Scholar]
  21. Lautner-Rieske A., Huber C., Meindl A., Pargent W., Schäble K. F., Thiebe R., Zocher I., Zachau H. G. The human immunoglobulin kappa locus. Characterization of the duplicated A regions. Eur J Immunol. 1992 Apr;22(4):1023–1029. doi: 10.1002/eji.1830220422. [DOI] [PubMed] [Google Scholar]
  22. Levy S., Campbell M. J., Levy R. Functional immunoglobulin light chain genes are replaced by ongoing rearrangements of germline V kappa genes to downstream J kappa segment in a murine B cell line. J Exp Med. 1989 Jul 1;170(1):1–13. doi: 10.1084/jem.170.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewis S. M. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol. 1994;56:27–150. doi: 10.1016/s0065-2776(08)60450-2. [DOI] [PubMed] [Google Scholar]
  24. Liu Y. J., Malisan F., de Bouteiller O., Guret C., Lebecque S., Banchereau J., Mills F. C., Max E. E., Martinez-Valdez H. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity. 1996 Mar;4(3):241–250. doi: 10.1016/s1074-7613(00)80432-x. [DOI] [PubMed] [Google Scholar]
  25. Lorenz W., Schäble K. F., Thiebe R., Stavnezer J., Zachau H. G. The J kappa proximal region of the human K locus contains three uncommon V kappa genes which are arranged in opposite transcriptional polarities. Mol Immunol. 1988 May;25(5):479–484. doi: 10.1016/0161-5890(88)90168-x. [DOI] [PubMed] [Google Scholar]
  26. Martin D., Huang R. Q., LeBien T., Van Ness B. Induced rearrangement of kappa genes in the BLIN-1 human pre-B cell line correlates with germline J-C kappa and V kappa transcription. J Exp Med. 1991 Mar 1;173(3):639–645. doi: 10.1084/jem.173.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Martin T., Blaison G., Levallois H., Pasquali J. L. Molecular analysis of the V kappa III-J kappa junctional diversity of polyclonal rheumatoid factors during rheumatoid arthritis frequently reveals N addition. Eur J Immunol. 1992 Jul;22(7):1773–1779. doi: 10.1002/eji.1830220716. [DOI] [PubMed] [Google Scholar]
  28. Melchers F., Rolink A., Grawunder U., Winkler T. H., Karasuyama H., Ghia P., Andersson J. Positive and negative selection events during B lymphopoiesis. Curr Opin Immunol. 1995 Apr;7(2):214–227. doi: 10.1016/0952-7915(95)80006-9. [DOI] [PubMed] [Google Scholar]
  29. Myhre E. B., Erntell M. A non-immune interaction between the light chain of human immunoglobulin and a surface component of a Peptococcus magnus strain. Mol Immunol. 1985 Aug;22(8):879–885. doi: 10.1016/0161-5890(85)90073-2. [DOI] [PubMed] [Google Scholar]
  30. Nilson B. H., Solomon A., Björck L., Akerström B. Protein L from Peptostreptococcus magnus binds to the kappa light chain variable domain. J Biol Chem. 1992 Feb 5;267(4):2234–2239. [PubMed] [Google Scholar]
  31. Nossal G. J., Karvelas M., Pulendran B. Soluble antigen profoundly reduces memory B-cell numbers even when given after challenge immunization. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3088–3092. doi: 10.1073/pnas.90.7.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pargent W., Meindl A., Thiebe R., Mitzel S., Zachau H. G. The human immunoglobulin kappa locus. Characterization of the duplicated O regions. Eur J Immunol. 1991 Aug;21(8):1821–1827. doi: 10.1002/eji.1830210807. [DOI] [PubMed] [Google Scholar]
  33. Pauza M. E., Rehmann J. A., LeBien T. W. Unusual patterns of immunoglobulin gene rearrangement and expression during human B cell ontogeny: human B cells can simultaneously express cell surface kappa and lambda light chains. J Exp Med. 1993 Jul 1;178(1):139–149. doi: 10.1084/jem.178.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996 Jun 27;381(6585):751–758. doi: 10.1038/381751a0. [DOI] [PubMed] [Google Scholar]
  35. Ramsden D. A., McBlane J. F., van Gent D. C., Gellert M. Distinct DNA sequence and structure requirements for the two steps of V(D)J recombination signal cleavage. EMBO J. 1996 Jun 17;15(12):3197–3206. [PMC free article] [PubMed] [Google Scholar]
  36. Razanajaona D., van Kooten C., Lebecque S., Bridon J. M., Ho S., Smith S., Callard R., Banchereau J., Brière F. Somatic mutations in human Ig variable genes correlate with a partially functional CD40-ligand in the X-linked hyper-IgM syndrome. J Immunol. 1996 Aug 15;157(4):1492–1498. [PubMed] [Google Scholar]
  37. Roth D. B., Menetski J. P., Nakajima P. B., Bosma M. J., Gellert M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell. 1992 Sep 18;70(6):983–991. doi: 10.1016/0092-8674(92)90248-b. [DOI] [PubMed] [Google Scholar]
  38. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  39. Schlissel M. S., Baltimore D. Activation of immunoglobulin kappa gene rearrangement correlates with induction of germline kappa gene transcription. Cell. 1989 Sep 8;58(5):1001–1007. doi: 10.1016/0092-8674(89)90951-3. [DOI] [PubMed] [Google Scholar]
  40. Schäble K. F., Zachau H. G. The variable genes of the human immunoglobulin kappa locus. Biol Chem Hoppe Seyler. 1993 Nov;374(11):1001–1022. [PubMed] [Google Scholar]
  41. Stall A. M., Wells S. M., Lam K. P. B-1 cells: unique origins and functions. Semin Immunol. 1996 Feb;8(1):45–59. doi: 10.1006/smim.1996.0007. [DOI] [PubMed] [Google Scholar]
  42. Stavnezer J., Kekish O., Batter D., Grenier J., Balazs I., Henderson E., Zegers B. J. Aberrant recombination events in B cell lines derived from a kappa-deficient human. Nucleic Acids Res. 1985 May 24;13(10):3495–3514. doi: 10.1093/nar/13.10.3495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thorbecke G. J., Amin A. R., Tsiagbe V. K. Biology of germinal centers in lymphoid tissue. FASEB J. 1994 Aug;8(11):832–840. doi: 10.1096/fasebj.8.11.8070632. [DOI] [PubMed] [Google Scholar]
  44. Tindall K. R., Kunkel T. A. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988 Aug 9;27(16):6008–6013. doi: 10.1021/bi00416a027. [DOI] [PubMed] [Google Scholar]
  45. Tomlinson I. M., Cox J. P., Gherardi E., Lesk A. M., Chothia C. The structural repertoire of the human V kappa domain. EMBO J. 1995 Sep 15;14(18):4628–4638. doi: 10.1002/j.1460-2075.1995.tb00142.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Victor K. D., Vu K., Feeney A. J. Limited junctional diversity in kappa light chains. Junctional sequences from CD43+B220+ early B cell progenitors resemble those from peripheral B cells. J Immunol. 1994 Apr 1;152(7):3467–3475. [PubMed] [Google Scholar]
  47. Wabl M., Steinberg C. Affinity maturation and class switching. Curr Opin Immunol. 1996 Feb;8(1):89–92. doi: 10.1016/s0952-7915(96)80110-5. [DOI] [PubMed] [Google Scholar]
  48. Wagner S. D., Neuberger M. S. Somatic hypermutation of immunoglobulin genes. Annu Rev Immunol. 1996;14:441–457. doi: 10.1146/annurev.immunol.14.1.441. [DOI] [PubMed] [Google Scholar]
  49. Weber J. C., Blaison G., Martin T., Knapp A. M., Pasquali J. L. Evidence that the V kappa III gene usage is nonstochastic in both adult and newborn peripheral B cells and that peripheral CD5+ adult B cells are oligoclonal. J Clin Invest. 1994 May;93(5):2093–2105. doi: 10.1172/JCI117204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. White J., Herman A., Pullen A. M., Kubo R., Kappler J. W., Marrack P. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell. 1989 Jan 13;56(1):27–35. doi: 10.1016/0092-8674(89)90980-x. [DOI] [PubMed] [Google Scholar]
  51. Zheng B., Kelsoe G., Han S. Somatic diversification of antibody responses. J Clin Immunol. 1996 Jan;16(1):1–11. doi: 10.1007/BF01540967. [DOI] [PubMed] [Google Scholar]
  52. Zouali M. B-cell superantigens: implications for selection of the human antibody repertoire. Immunol Today. 1995 Aug;16(8):399–405. doi: 10.1016/0167-5699(95)80009-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES