Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 1;99(7):1651–1661. doi: 10.1172/JCI119328

Signature current of SO2-induced bronchitis in rabbit.

N Iwase 1, T Sasaki 1, S Shimura 1, T Fushimi 1, H Okayama 1, H Hoshi 1, T Irokawa 1, K Sasamori 1, K Takahashi 1, K Shirato 1
PMCID: PMC507985  PMID: 9120009

Abstract

To investigate abnormalities of airway epithelial ion transport underlying chronic inflammatory airway diseases, we performed electrophysiological, histological, and molecular biological experiments using rabbits exposed to SO2 as a model of bronchitis. By comparison with control, the SO2-exposed trachea exhibited decreased short circuit current (Isc) and conductance associated with increased potential difference. In normal trachea, apical ATP induced a transient Isc activation followed by a suppression, whereas the bronchitis model exhibited a prolonged activation without suppression. This pathological ATP response was abolished by diphenylamine 2-carboxylate or Cl--free bath solution. A significant increase in net Cl- flux toward the lumen was observed after ATP in our bronchitis model. Isoproterenol or adenosine evoked a sustained Isc increase in SO2-exposed, but not in normal, tracheas. The Northern blot analysis showed a strong expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA in SO2-exposed epithelium. The immunohistochemical study revealed a positive label of CFTR on cells located luminally only in SO2-exposed rabbits. We concluded that the prolonged ATP response in our bronchitis model was of a superimposed normal and adenosine-activated current. The latter current was also activated by isoproterenol and appeared as a signature current for the bronchitis model airway. This was likely mediated by CFTR expressed in the course of chronic inflammation.

Full Text

The Full Text of this article is available as a PDF (869.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo M. Effect of acetyl choline on ion transport in sheep tracheal epithelium. Pflugers Arch. 1994 Jul;427(5-6):543–546. doi: 10.1007/BF00374272. [DOI] [PubMed] [Google Scholar]
  2. Al-Bazzaz F. J., Al-Awqati Q. Interaction between sodium and chloride transport in canine tracheal mucosa. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jan;46(1):111–119. doi: 10.1152/jappl.1979.46.1.111. [DOI] [PubMed] [Google Scholar]
  3. Al-Bazzaz F. J., Kelsey J. G., Kaage W. D. Substance P stimulation of chloride secretion by canine tracheal mucosa. Am Rev Respir Dis. 1985 Jan;131(1):86–89. doi: 10.1164/arrd.1985.131.1.86. [DOI] [PubMed] [Google Scholar]
  4. Anderson M. P., Gregory R. J., Thompson S., Souza D. W., Paul S., Mulligan R. C., Smith A. E., Welsh M. J. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991 Jul 12;253(5016):202–205. doi: 10.1126/science.1712984. [DOI] [PubMed] [Google Scholar]
  5. Boucher R. C., Gatzy J. T. Characteristics of sodium transport by excised rabbit trachea. J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1877–1883. doi: 10.1152/jappl.1983.55.6.1877. [DOI] [PubMed] [Google Scholar]
  6. Boucher R. C. Human airway ion transport. Part one. Am J Respir Crit Care Med. 1994 Jul;150(1):271–281. doi: 10.1164/ajrccm.150.1.8025763. [DOI] [PubMed] [Google Scholar]
  7. Bruns R. F. Adenosine receptors. Roles and pharmacology. Ann N Y Acad Sci. 1990;603:211–226. doi: 10.1111/j.1749-6632.1990.tb37674.x. [DOI] [PubMed] [Google Scholar]
  8. Cushley M. J., Tattersfield A. E., Holgate S. T. Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol. 1983 Feb;15(2):161–165. doi: 10.1111/j.1365-2125.1983.tb01481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gatzy J. T. Ion transport across the excised bullfrog lung. Am J Physiol. 1975 Apr;228(4):1162–1171. doi: 10.1152/ajplegacy.1975.228.4.1162. [DOI] [PubMed] [Google Scholar]
  10. Hoshi H., Ohno I., Honma M., Tanno Y., Yamauchi K., Tamura G., Shirato K. IL-5, IL-8 and GM-CSF immunostaining of sputum cells in bronchial asthma and chronic bronchitis. Clin Exp Allergy. 1995 Aug;25(8):720–728. doi: 10.1111/j.1365-2222.1995.tb00009.x. [DOI] [PubMed] [Google Scholar]
  11. Jacoby D. B., Ueki I. F., Widdicombe J. H., Loegering D. A., Gleich G. J., Nadel J. A. Effect of human eosinophil major basic protein on ion transport in dog tracheal epithelium. Am Rev Respir Dis. 1988 Jan;137(1):13–16. doi: 10.1164/ajrccm/137.1.13. [DOI] [PubMed] [Google Scholar]
  12. Jarnigan F., Davis J. D., Bromberg P. A., Gatzy J. T., Boucher R. C. Bioelectric properties and ion transport of excised rabbit trachea. J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1884–1892. doi: 10.1152/jappl.1983.55.6.1884. [DOI] [PubMed] [Google Scholar]
  13. Jones R., Bolduc P., Reid L. Goblet cell glycoprotein and tracheal gland hypertrophy in rat airways: the effect of tobacco smoke with or without the anti-inflammatory agent phenylmethyloxadiazole. Br J Exp Pathol. 1973 Apr;54(2):229–239. [PMC free article] [PubMed] [Google Scholar]
  14. Kasé Y., Seo H., Oyama Y., Sakata M., Tomoda K., Takahama K., Hitoshi T., Okano Y., Miyata T. A new method for evaluating mucolytic expectorant activity and its application. I. Methodology. Arzneimittelforschung. 1982;32(4):368–373. [PubMed] [Google Scholar]
  15. Killingsworth C. R., Paulauskis J. D., Shore S. A. Substance P content and preprotachykinin gene-I mRNA expression in a rat model of chronic bronchitis. Am J Respir Cell Mol Biol. 1996 Apr;14(4):334–340. doi: 10.1165/ajrcmb.14.4.8600937. [DOI] [PubMed] [Google Scholar]
  16. Knowles M. R., Buntin W. H., Bromberg P. A., Gatzy J. T., Boucher R. C. Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am Rev Respir Dis. 1982 Jul;126(1):108–112. doi: 10.1164/arrd.1982.126.1.108. [DOI] [PubMed] [Google Scholar]
  17. Knowles M. R., Clarke L. L., Boucher R. C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med. 1991 Aug 22;325(8):533–538. doi: 10.1056/NEJM199108223250802. [DOI] [PubMed] [Google Scholar]
  18. Liedtke C. M. Interaction of epinephrine with isolated rabbit tracheal epithelial cells. Am J Physiol. 1986 Aug;251(2 Pt 1):C209–C215. doi: 10.1152/ajpcell.1986.251.2.C209. [DOI] [PubMed] [Google Scholar]
  19. Madara J. L., Patapoff T. W., Gillece-Castro B., Colgan S. P., Parkos C. A., Delp C., Mrsny R. J. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest. 1993 May;91(5):2320–2325. doi: 10.1172/JCI116462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Man S. F., Hulbert W. C., Man G., Mok K., Williams D. J. Effects of SO2 exposure on canine pulmonary epithelial functions. Exp Lung Res. 1989 Mar;15(2):181–198. doi: 10.3109/01902148909087852. [DOI] [PubMed] [Google Scholar]
  21. Mardini I. A., Higgins N. C., Zhou S., Benovic J. L., Kelsen S. G. Functional behavior of the beta-adrenergic receptor-adenylyl cyclase system in rabbit airway epithelium. Am J Respir Cell Mol Biol. 1994 Sep;11(3):287–295. doi: 10.1165/ajrcmb.11.3.7916196. [DOI] [PubMed] [Google Scholar]
  22. Mariassy A. T., Abraham W. M., Phipps R. J., Sielczak M. W., Wanner A. Effect of ozone on the postnatal development of lamb mucociliary apparatus. J Appl Physiol (1985) 1990 Jun;68(6):2504–2510. doi: 10.1152/jappl.1990.68.6.2504. [DOI] [PubMed] [Google Scholar]
  23. McGrath S. A., Basu A., Zeitlin P. L. Cystic fibrosis gene and protein expression during fetal lung development. Am J Respir Cell Mol Biol. 1993 Feb;8(2):201–208. doi: 10.1165/ajrcmb/8.2.201. [DOI] [PubMed] [Google Scholar]
  24. Misumi Y., Ogata S., Hirose S., Ikehara Y. Primary structure of rat liver 5'-nucleotidase deduced from the cDNA. Presence of the COOH-terminal hydrophobic domain for possible post-translational modification by glycophospholipid. J Biol Chem. 1990 Feb 5;265(4):2178–2183. [PubMed] [Google Scholar]
  25. Mo M., Eskin S. G., Schilling W. P. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am J Physiol. 1991 May;260(5 Pt 2):H1698–H1707. doi: 10.1152/ajpheart.1991.260.5.H1698. [DOI] [PubMed] [Google Scholar]
  26. Pratt A. D., Clancy G., Welsh M. J. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium. Am J Physiol. 1986 Aug;251(2 Pt 1):C167–C174. doi: 10.1152/ajpcell.1986.251.2.C167. [DOI] [PubMed] [Google Scholar]
  27. Rich D. P., Gregory R. J., Anderson M. P., Manavalan P., Smith A. E., Welsh M. J. Effect of deleting the R domain on CFTR-generated chloride channels. Science. 1991 Jul 12;253(5016):205–207. doi: 10.1126/science.1712985. [DOI] [PubMed] [Google Scholar]
  28. Sasaki T., Shimura S., Wakui M., Ohkawara Y., Takishima T., Mikoshiba K. Apically localized IP3 receptors control chloride current in airway gland acinar cells. Am J Physiol. 1994 Aug;267(2 Pt 1):L152–L158. doi: 10.1152/ajplung.1994.267.2.L152. [DOI] [PubMed] [Google Scholar]
  29. Satoh M., Sasaki T., Shimura S., Sasaki H., Takishima T. Tumor necrosis factor attenuates beta agonist-evoked Cl- secretion in canine tracheal epithelium. Respir Physiol. 1991 Jun;84(3):379–387. doi: 10.1016/0034-5687(91)90131-2. [DOI] [PubMed] [Google Scholar]
  30. Seltzer J., Scanlon P. D., Drazen J. M., Ingram R. H., Jr, Reid L. Morphologic correlation of physiologic changes caused by SO2-induced bronchitis in dogs. The role of inflammation. Am Rev Respir Dis. 1984 May;129(5):790–797. doi: 10.1164/arrd.1984.129.5.790. [DOI] [PubMed] [Google Scholar]
  31. Shimura S., Sasaki T., Nagaki M., Takishima T., Shirato K. Extracellular ATP regulation of feline tracheal submucosal gland secretion. Am J Physiol. 1994 Aug;267(2 Pt 1):L159–L164. doi: 10.1152/ajplung.1994.267.2.L159. [DOI] [PubMed] [Google Scholar]
  32. Stutts M. J., Bromberg P. A. Effects of ozone on airway epithelial permeability and ion transport. Toxicol Lett. 1987 Feb;35(2-3):315–319. [PubMed] [Google Scholar]
  33. Stutts M. J., Canessa C. M., Olsen J. C., Hamrick M., Cohn J. A., Rossier B. C., Boucher R. C. CFTR as a cAMP-dependent regulator of sodium channels. Science. 1995 Aug 11;269(5225):847–850. doi: 10.1126/science.7543698. [DOI] [PubMed] [Google Scholar]
  34. Stutts M. J., Schwab J. H., Chen M. G., Knowles M. R., Boucher R. C. Effects of Pseudomonas aeruginosa on bronchial epithelial ion transport. Am Rev Respir Dis. 1986 Jul;134(1):17–21. doi: 10.1164/arrd.1986.134.1.17. [DOI] [PubMed] [Google Scholar]
  35. Trapnell B. C., Zeitlin P. L., Chu C. S., Yoshimura K., Nakamura H., Guggino W. B., Bargon J., Banks T. C., Dalemans W., Pavirani A. Down-regulation of cystic fibrosis gene mRNA transcript levels and induction of the cystic fibrosis chloride secretory phenotype in epithelial cells by phorbol ester. J Biol Chem. 1991 Jun 5;266(16):10319–10323. [PubMed] [Google Scholar]
  36. Van Scott M. R., Penland C. M., Welch C. A., Lazarowski E. Beta-adrenergic regulation of Cl- and HCO3- secretion by Clara cells. Am J Respir Cell Mol Biol. 1995 Sep;13(3):344–351. doi: 10.1165/ajrcmb.13.3.7654389. [DOI] [PubMed] [Google Scholar]
  37. Zeitlin P. L., Loughlin G. M., Guggino W. B. Ion transport in cultured fetal and adult rabbit tracheal epithelia. Am J Physiol. 1988 May;254(5 Pt 1):C691–C698. doi: 10.1152/ajpcell.1988.254.5.C691. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES