Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 1;99(7):1691–1698. doi: 10.1172/JCI119332

RNA metabolism in myotonic dystrophy: patient muscle shows decreased insulin receptor RNA and protein consistent with abnormal insulin resistance.

A Morrone 1, E Pegoraro 1, C Angelini 1, E Zammarchi 1, G Marconi 1, E P Hoffman 1
PMCID: PMC507989  PMID: 9120013

Abstract

Myotonic dystrophy is a dominantly inherited clinically variable multisystemic disorder, and has been found to be caused by heterozygosity for a trinucleotide repeat expansion mutation in the 3' untranslated region of a protein kinase gene (DM kinase). The mechanisms by which the expanded repeat in DNA results in a dominant biochemical defect and the varied clinical phenotype, is not known. We have recently proposed a model where disease pathogenesis may occur at the RNA level in myotonic dystrophy: the mutant DM kinase RNA with the expansion mutation may disrupt cellular RNA metabolism in some general manner, as evidenced by defects in RNA processing of the normal DM kinase gene in heterozygous patients (dominant negative RNA mutation). Here we further test this hypothesis by measuring RNA metabolism of other genes in patient muscle biopsies (nine adult onset myotonic dystrophy patients, two congenital muscular dystrophy patients, four normal controls, and four myopathic controls). We focused on the insulin receptor gene because of the documented insulin resistance of DM patients. We show that there is a significant decrease in insulin receptor RNA in both total RNA and RNA polyA+ pools relative to normal and myopathic control muscles (P < 0.002), measured relative to both dystrophin RNA and muscle sodium channel RNA. We also show reductions in insulin receptor protein. Our results reinforce the concept of a generalized RNA metabolism defect in myotonic dystrophy, and offer a possible molecular mechanism for the increased insulin resistance observed in many myotonic dystrophy patients.

Full Text

The Full Text of this article is available as a PDF (224.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boge A., Sauerwein H., Meyer H. H. IGF-I and insulin receptors in bovine skeletal muscle: comparisons of different developmental ages, two different genotypes and various individual muscles. Exp Clin Endocrinol Diabetes. 1995;103(2):99–104. doi: 10.1055/s-0029-1211336. [DOI] [PubMed] [Google Scholar]
  2. Boucher C. A., King S. K., Carey N., Krahe R., Winchester C. L., Rahman S., Creavin T., Meghji P., Bailey M. E., Chartier F. L. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum Mol Genet. 1995 Oct;4(10):1919–1925. doi: 10.1093/hmg/4.10.1919. [DOI] [PubMed] [Google Scholar]
  3. Brook J. D., McCurrach M. E., Harley H. G., Buckler A. J., Church D., Aburatani H., Hunter K., Stanton V. P., Thirion J. P., Hudson T. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992 Feb 21;68(4):799–808. doi: 10.1016/0092-8674(92)90154-5. [DOI] [PubMed] [Google Scholar]
  4. Buxton J., Shelbourne P., Davies J., Jones C., Van Tongeren T., Aslanidis C., de Jong P., Jansen G., Anvret M., Riley B. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature. 1992 Feb 6;355(6360):547–548. doi: 10.1038/355547a0. [DOI] [PubMed] [Google Scholar]
  5. Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8;271(5254):1423–1427. doi: 10.1126/science.271.5254.1423. [DOI] [PubMed] [Google Scholar]
  6. Carango P., Noble J. E., Marks H. G., Funanage V. L. Absence of myotonic dystrophy protein kinase (DMPK) mRNA as a result of a triplet repeat expansion in myotonic dystrophy. Genomics. 1993 Nov;18(2):340–348. doi: 10.1006/geno.1993.1474. [DOI] [PubMed] [Google Scholar]
  7. Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
  8. Fratino P., Bellomo G., Bellazzi R., Martignoni E., Nappi G. Insulin receptors in myotonic dystrophy. Acta Neurol Belg. 1982 May-Jun;82(3):128–137. [PubMed] [Google Scholar]
  9. Fu Y. H., Friedman D. L., Richards S., Pearlman J. A., Gibbs R. A., Pizzuti A., Ashizawa T., Perryman M. B., Scarlato G., Fenwick R. G., Jr Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science. 1993 Apr 9;260(5105):235–238. doi: 10.1126/science.8469976. [DOI] [PubMed] [Google Scholar]
  10. Fu Y. H., Pizzuti A., Fenwick R. G., Jr, King J., Rajnarayan S., Dunne P. W., Dubel J., Nasser G. A., Ashizawa T., de Jong P. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992 Mar 6;255(5049):1256–1258. doi: 10.1126/science.1546326. [DOI] [PubMed] [Google Scholar]
  11. Harley H. G., Brook J. D., Rundle S. A., Crow S., Reardon W., Buckler A. J., Harper P. S., Housman D. E., Shaw D. J. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature. 1992 Feb 6;355(6360):545–546. doi: 10.1038/355545a0. [DOI] [PubMed] [Google Scholar]
  12. Hoffman E. P., Fischbeck K. H., Brown R. H., Johnson M., Medori R., Loike J. D., Harris J. B., Waterston R., Brooke M., Specht L. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med. 1988 May 26;318(21):1363–1368. doi: 10.1056/NEJM198805263182104. [DOI] [PubMed] [Google Scholar]
  13. Hoffman E. P. Stutter, stumble, or fall of a kinase? Curr Biol. 1992 Jun;2(6):309–311. doi: 10.1016/0960-9822(92)90884-d. [DOI] [PubMed] [Google Scholar]
  14. Hofmann-Radvanyi H., Lavedan C., Rabès J. P., Savoy D., Duros C., Johnson K., Junien C. Myotonic dystrophy: absence of CTG enlarged transcript in congenital forms, and low expression of the normal allele. Hum Mol Genet. 1993 Aug;2(8):1263–1266. doi: 10.1093/hmg/2.8.1263. [DOI] [PubMed] [Google Scholar]
  15. Hudson A. J., Huff M. W., Wright C. G., Silver M. M., Lo T. C., Banerjee D. The role of insulin resistance in the pathogenesis of myotonic muscular dystrophy. Brain. 1987 Apr;110(Pt 2):469–488. doi: 10.1093/brain/110.2.469. [DOI] [PubMed] [Google Scholar]
  16. Jansen G., Bächner D., Coerwinkel M., Wormskamp N., Hameister H., Wieringa B. Structural organization and developmental expression pattern of the mouse WD-repeat gene DMR-N9 immediately upstream of the myotonic dystrophy locus. Hum Mol Genet. 1995 May;4(5):843–852. doi: 10.1093/hmg/4.5.843. [DOI] [PubMed] [Google Scholar]
  17. Jansen G., Groenen P. J., Bächner D., Jap P. H., Coerwinkel M., Oerlemans F., van den Broek W., Gohlsch B., Pette D., Plomp J. J. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet. 1996 Jul;13(3):316–324. doi: 10.1038/ng0796-316. [DOI] [PubMed] [Google Scholar]
  18. Kaprielian Z., Fambrough D. M. Expression of fast and slow isoforms of the Ca2+-ATPase in developing chick skeletal muscle. Dev Biol. 1987 Dec;124(2):490–503. doi: 10.1016/0012-1606(87)90502-1. [DOI] [PubMed] [Google Scholar]
  19. Koenig M., Hoffman E. P., Bertelson C. J., Monaco A. P., Feener C., Kunkel L. M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987 Jul 31;50(3):509–517. doi: 10.1016/0092-8674(87)90504-6. [DOI] [PubMed] [Google Scholar]
  20. Koga R., Nakao Y., Kurano Y., Tsukahara T., Nakamura A., Ishiura S., Nonaka I., Arahata K. Decreased myotonin-protein kinase in the skeletal and cardiac muscles in myotonic dystrophy. Biochem Biophys Res Commun. 1994 Jul 15;202(1):577–585. doi: 10.1006/bbrc.1994.1967. [DOI] [PubMed] [Google Scholar]
  21. Krahe R., Ashizawa T., Abbruzzese C., Roeder E., Carango P., Giacanelli M., Funanage V. L., Siciliano M. J. Effect of myotonic dystrophy trinucleotide repeat expansion on DMPK transcription and processing. Genomics. 1995 Jul 1;28(1):1–14. doi: 10.1006/geno.1995.1099. [DOI] [PubMed] [Google Scholar]
  22. Krentz A. J., Coles N. H., Williams A. C., Nattrass M. Abnormal regulation of intermediary metabolism after oral glucose ingestion in myotonic dystrophy. Metabolism. 1990 Sep;39(9):938–942. doi: 10.1016/0026-0495(90)90304-u. [DOI] [PubMed] [Google Scholar]
  23. Mahadevan M. S., Baird S., Bailly J. E., Shutler G. G., Sabourin L. A., Tsilfidis C., Neville C. E., Narang M., Korneluk R. G. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3. Genomics. 1995 Nov 1;30(1):84–88. doi: 10.1006/geno.1995.0013. [DOI] [PubMed] [Google Scholar]
  24. Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barceló J., O'Hoy K. Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science. 1992 Mar 6;255(5049):1253–1255. doi: 10.1126/science.1546325. [DOI] [PubMed] [Google Scholar]
  25. McClelland A., Kühn L. C., Ruddle F. H. The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell. 1984 Dec;39(2 Pt 1):267–274. doi: 10.1016/0092-8674(84)90004-7. [DOI] [PubMed] [Google Scholar]
  26. Miller J. B., Crow M. T., Stockdale F. E. Slow and fast myosin heavy chain content defines three types of myotubes in early muscle cell cultures. J Cell Biol. 1985 Nov;101(5 Pt 1):1643–1650. doi: 10.1083/jcb.101.5.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moxley R. T., 3rd, Kingston W. J., Griggs R. C., Livingston J. N. Lack of rapid enhancement of insulin action after oral glucose challenge in myotonic dystrophy. Diabetes. 1987 Jun;36(6):693–701. doi: 10.2337/diab.36.6.693. [DOI] [PubMed] [Google Scholar]
  28. Novelli G., Gennarelli M., Zelano G., Pizzuti A., Fattorini C., Caskey C. T., Dallapiccola B. Failure in detecting mRNA transcripts from the mutated allele in myotonic dystrophy muscle. Biochem Mol Biol Int. 1993 Feb;29(2):291–297. [PubMed] [Google Scholar]
  29. Otten A. D., Tapscott S. J. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5465–5469. doi: 10.1073/pnas.92.12.5465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perryman M. B., Kerner S. A., Bohlmeyer T. J., Roberts R. Isolation and sequence analysis of a full-length cDNA for human M creatine kinase. Biochem Biophys Res Commun. 1986 Nov 14;140(3):981–989. doi: 10.1016/0006-291x(86)90732-1. [DOI] [PubMed] [Google Scholar]
  31. Perurena O. H., Festoff B. W. Environmental influence on altered receptor function in a genetic disease: insulin and glucose affect insulin receptors in myotonic dystrophy. J Neurol Sci. 1989 Jan;89(1):15–25. doi: 10.1016/0022-510x(89)90003-8. [DOI] [PubMed] [Google Scholar]
  32. Piccardo M. G., Pacini G., Rosa M., Vichi R. Insulin resistance in myotonic dystrophy. Enzyme. 1991;45(1-2):14–22. doi: 10.1159/000468860. [DOI] [PubMed] [Google Scholar]
  33. Pieretti M., Zhang F. P., Fu Y. H., Warren S. T., Oostra B. A., Caskey C. T., Nelson D. L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991 Aug 23;66(4):817–822. doi: 10.1016/0092-8674(91)90125-i. [DOI] [PubMed] [Google Scholar]
  34. Reddy S., Smith D. B., Rich M. M., Leferovich J. M., Reilly P., Davis B. M., Tran K., Rayburn H., Bronson R., Cros D. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet. 1996 Jul;13(3):325–335. doi: 10.1038/ng0796-325. [DOI] [PubMed] [Google Scholar]
  35. Sabouri L. A., Mahadevan M. S., Narang M., Lee D. S., Surh L. C., Korneluk R. G. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nat Genet. 1993 Jul;4(3):233–238. doi: 10.1038/ng0793-233. [DOI] [PubMed] [Google Scholar]
  36. Schwartz L. S., Tarleton J., Popovich B., Seltzer W. K., Hoffman E. P. Fluorescent multiplex linkage analysis and carrier detection for Duchenne/Becker muscular dystrophy. Am J Hum Genet. 1992 Oct;51(4):721–729. [PMC free article] [PubMed] [Google Scholar]
  37. Shome K., Xu X. Q., Romero G. Brefeldin A inhibits insulin-dependent receptor redistribution in HIRcB cells. FEBS Lett. 1995 Jan 3;357(2):109–114. doi: 10.1016/0014-5793(94)01310-w. [DOI] [PubMed] [Google Scholar]
  38. Shutler G., Korneluk R. G., Tsilfidis C., Mahadevan M., Bailly J., Smeets H., Jansen G., Wieringa B., Lohman F., Aslanidis C. Physical mapping and cloning of the proximal segment of the myotonic dystrophy gene region. Genomics. 1992 Jul;13(3):518–525. doi: 10.1016/0888-7543(92)90119-d. [DOI] [PubMed] [Google Scholar]
  39. Taneja K. L., McCurrach M., Schalling M., Housman D., Singer R. H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol. 1995 Mar;128(6):995–1002. doi: 10.1083/jcb.128.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Timchenko L. T., Timchenko N. A., Caskey C. T., Roberts R. Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy. Hum Mol Genet. 1996 Jan;5(1):115–121. doi: 10.1093/hmg/5.1.115. [DOI] [PubMed] [Google Scholar]
  41. Wang J. Z., Rojas C. V., Zhou J. H., Schwartz L. S., Nicholas H., Hoffman E. P. Sequence and genomic structure of the human adult skeletal muscle sodium channel alpha subunit gene on 17q. Biochem Biophys Res Commun. 1992 Jan 31;182(2):794–801. doi: 10.1016/0006-291x(92)91802-w. [DOI] [PubMed] [Google Scholar]
  42. Wang J., Pegoraro E., Menegazzo E., Gennarelli M., Hoop R. C., Angelini C., Hoffman E. P. Myotonic dystrophy: evidence for a possible dominant-negative RNA mutation. Hum Mol Genet. 1995 Apr;4(4):599–606. doi: 10.1093/hmg/4.4.599. [DOI] [PubMed] [Google Scholar]
  43. Wang Y. H., Amirhaeri S., Kang S., Wells R. D., Griffith J. D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science. 1994 Jul 29;265(5172):669–671. doi: 10.1126/science.8036515. [DOI] [PubMed] [Google Scholar]
  44. Wang Y. H., Griffith J. Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural nucleosome positioning elements. Genomics. 1995 Jan 20;25(2):570–573. doi: 10.1016/0888-7543(95)80061-p. [DOI] [PubMed] [Google Scholar]
  45. Zhou J., Hoffman E. P. Pathophysiology of sodium channelopathies. Studies of sodium channel expression by quantitative multiplex fluorescence polymerase chain reaction. J Biol Chem. 1994 Jul 15;269(28):18563–18571. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES