Abstract
These studies were undertaken to determine the kinetic characteristics of high density lipoprotein (HDL) apo AI and cholesteryl ester transport in the hamster in vivo. Saturable HDL apo AI transport was demonstrated in the kidneys, adrenal glands, and liver. Saturable HDL cholesteryl ester transport was highest in the adrenal glands and liver. In the liver and adrenal glands, maximal transport rates (J(m)) for receptor dependent uptake were similar for the protein and cholesteryl ester moieties; however, the concentration of HDL necessary to achieve half-maximal transport (K(m)) was 20- to 30-fold higher for apo AI. Consequently, at normal plasma HDL concentrations, the clearance of HDL cholesteryl ester exceeded that of HDL apo AI by approximately 10-fold in the adrenal glands and by approximately fivefold in the liver. At normal HDL concentrations, the majority of HDL cholesteryl ester (76%) was cleared by the liver whereas the majority of HDL apo AI (77%) was cleared by extrahepatic tissues. The rate of HDL cholesteryl ester uptake by the liver equaled the rate of cholesterol acquisition by all extrahepatic tissues suggesting that HDL cholesteryl ester uptake by the liver accurately reflects the rate of "reverse cholesterol transport." Receptor dependent HDL cholesteryl ester uptake by the liver was maximal (saturated) at normal plasma HDL concentrations. Consequently, changes in plasma HDL concentrations are not accompanied by parallel changes in the delivery of HDL cholesteryl ester to the liver unless the number or affinity of transporters is also regulated.
Full Text
The Full Text of this article is available as a PDF (225.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott R. D., Wilson P. W., Kannel W. B., Castelli W. P. High density lipoprotein cholesterol, total cholesterol screening, and myocardial infarction. The Framingham Study. Arteriosclerosis. 1988 May-Jun;8(3):207–211. doi: 10.1161/01.atv.8.3.207. [DOI] [PubMed] [Google Scholar]
- Acton S., Rigotti A., Landschulz K. T., Xu S., Hobbs H. H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996 Jan 26;271(5248):518–520. doi: 10.1126/science.271.5248.518. [DOI] [PubMed] [Google Scholar]
- Andersen J. M., Dietschy J. M. Kinetic parameters of the lipoprotein transport systems in the adrenal gland of the rat determined in vivo. Comparison of low and high density lipoproteins of human and rat origin. J Biol Chem. 1981 Jul 25;256(14):7362–7370. [PubMed] [Google Scholar]
- Bierman E. L., Oram J. F. The interaction of high-density lipoproteins with extrahepatic cells. Am Heart J. 1987 Feb;113(2 Pt 2):549–550. doi: 10.1016/0002-8703(87)90630-2. [DOI] [PubMed] [Google Scholar]
- Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
- Brinton E. A., Eisenberg S., Breslow J. L. Elevated high density lipoprotein cholesterol levels correlate with decreased apolipoprotein A-I and A-II fractional catabolic rate in women. J Clin Invest. 1989 Jul;84(1):262–269. doi: 10.1172/JCI114149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietschy J. M., Spady D. K. Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res. 1984 Dec 15;25(13):1469–1476. [PubMed] [Google Scholar]
- Fielding C. J., Fielding P. E. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995 Feb;36(2):211–228. [PubMed] [Google Scholar]
- Fielding C. J. The origin and properties of free cholesterol potential gradients in plasma, and their relation to atherogenesis. J Lipid Res. 1984 Dec 15;25(13):1624–1628. [PubMed] [Google Scholar]
- Glass C. K., Pittman R. C., Keller G. A., Steinberg D. Tissue sites of degradation of apoprotein A-I in the rat. J Biol Chem. 1983 Jun 10;258(11):7161–7167. [PubMed] [Google Scholar]
- Glass C., Pittman R. C., Civen M., Steinberg D. Uptake of high-density lipoprotein-associated apoprotein A-I and cholesterol esters by 16 tissues of the rat in vivo and by adrenal cells and hepatocytes in vitro. J Biol Chem. 1985 Jan 25;260(2):744–750. [PubMed] [Google Scholar]
- Glass C., Pittman R. C., Weinstein D. B., Steinberg D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5435–5439. doi: 10.1073/pnas.80.17.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
- Goldberg D. I., Beltz W. F., Pittman R. C. Evaluation of pathways for the cellular uptake of high density lipoprotein cholesterol esters in rabbits. J Clin Invest. 1991 Jan;87(1):331–346. doi: 10.1172/JCI114991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
- Gordon D. J., Rifkind B. M. High-density lipoprotein--the clinical implications of recent studies. N Engl J Med. 1989 Nov 9;321(19):1311–1316. doi: 10.1056/NEJM198911093211907. [DOI] [PubMed] [Google Scholar]
- Goulinet S., Chapman M. J. Plasma lipoproteins in the golden Syrian hamster (Mesocricetus auratus): heterogeneity of apoB- and apoA-I-containing particles. J Lipid Res. 1993 Jun;34(6):943–959. [PubMed] [Google Scholar]
- Green S. R., Beltz W. F., Goldberg D. I., Pittman R. C. Cholesteryl oleyl and linoleyl ethers do not trace their ester counterparts in animals with plasma cholesteryl ester transfer activity. J Lipid Res. 1989 Sep;30(9):1405–1410. [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halperin G., Stein O., Stein Y. Synthesis of ether analogs of lipoprotein lipids and their biological applications. Methods Enzymol. 1986;129:816–848. doi: 10.1016/0076-6879(86)29107-7. [DOI] [PubMed] [Google Scholar]
- Horton J. D., Cuthbert J. A., Spady D. K. Regulation of hepatic 7 alpha-hydroxylase expression by dietary psyllium in the hamster. J Clin Invest. 1994 May;93(5):2084–2092. doi: 10.1172/JCI117203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hough J. L., Zilversmit D. B. Comparison of various methods for in vitro cholesteryl ester labeling of lipoproteins from hypercholesterolemic rabbits. Biochim Biophys Acta. 1984 Mar 7;792(3):338–347. doi: 10.1016/0005-2760(84)90202-9. [DOI] [PubMed] [Google Scholar]
- Jeske D. J., Dietschy J. M. Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H]water. J Lipid Res. 1980 Mar;21(3):364–376. [PubMed] [Google Scholar]
- Khoo J. C., Pittman R. C., Rubin E. M. Selective uptake of HDL cholesteryl esters is active in transgenic mice expressing human apolipoprotein A-I. J Lipid Res. 1995 Mar;36(3):593–600. [PubMed] [Google Scholar]
- Miller G. J., Miller N. E. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975 Jan 4;1(7897):16–19. doi: 10.1016/s0140-6736(75)92376-4. [DOI] [PubMed] [Google Scholar]
- Pittman R. C., Knecht T. P., Rosenbaum M. S., Taylor C. A., Jr A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesterol esters. J Biol Chem. 1987 Feb 25;262(6):2443–2450. [PubMed] [Google Scholar]
- Ponsin G., Pulcini T., Sparrow J. T., Gotto A. M., Jr, Pownall H. J. High density lipoprotein interconversions in rat and man as assessed with a novel nontransferable apolipopeptide. J Biol Chem. 1993 Feb 15;268(5):3114–3119. [PubMed] [Google Scholar]
- Quig D. W., Arbeeny C. M., Zilversmit D. B. Effects of hyperlipidemias in hamsters on lipid transfer protein activity and unidirectional cholesteryl ester transfer in plasma. Biochim Biophys Acta. 1991 Jun 3;1083(3):257–264. doi: 10.1016/0005-2760(91)90080-2. [DOI] [PubMed] [Google Scholar]
- Rifai N., King M. E. Immunoturbidimetric assays of apolipoproteins A, AI, AII, and B in serum. Clin Chem. 1986 Jun;32(6):957–961. [PubMed] [Google Scholar]
- Rigotti A., Acton S. L., Krieger M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem. 1995 Jul 7;270(27):16221–16224. doi: 10.1074/jbc.270.27.16221. [DOI] [PubMed] [Google Scholar]
- Rinninger F., Brundert M., Jäckle S., Galle P. R., Busch C., Izbicki J. R., Rogiers X., Henne-Bruns D., Kremer B., Broelsch C. E. Selective uptake of high-density lipoprotein-associated cholesteryl esters by human hepatocytes in primary culture. Hepatology. 1994 May;19(5):1100–1114. [PubMed] [Google Scholar]
- Rinninger F., Jaeckle S., Greten H., Windler E. Selective association of lipoprotein cholesteryl esters with liver plasma membranes. Biochim Biophys Acta. 1993 Feb 24;1166(2-3):284–299. doi: 10.1016/0005-2760(93)90109-m. [DOI] [PubMed] [Google Scholar]
- Rinninger F., Pittman R. C. Regulation of the selective uptake of high density lipoprotein-associated cholesteryl esters by human fibroblasts and Hep G2 hepatoma cells. J Lipid Res. 1988 Sep;29(9):1179–1194. [PubMed] [Google Scholar]
- Rinninger F., Pittman R. C. Regulation of the selective uptake of high density lipoprotein-associated cholesteryl esters. J Lipid Res. 1987 Nov;28(11):1313–1325. [PubMed] [Google Scholar]
- Schaefer E. J., Levy R. I., Ernst N. D., Van Sant F. D., Brewer H. B., Jr The effects of low cholesterol, high polyunsaturated fat, and low fat diets on plasma lipid and lipoprotein cholesterol levels in normal and hypercholesterolemic subjects. Am J Clin Nutr. 1981 Sep;34(9):1758–1763. doi: 10.1093/ajcn/34.9.1758. [DOI] [PubMed] [Google Scholar]
- Shepherd J., Packard C. J., Gotto A. M., Jr, Taunton O. D. A comparison of two methods to investigate the metabolism of human apolipoproteins A-I and and A-II. J Lipid Res. 1978 Jul;19(5):656–661. [PubMed] [Google Scholar]
- Sloop C. H., Dory L., Roheim P. S. Interstitial fluid lipoproteins. J Lipid Res. 1987 Mar;28(3):225–237. [PubMed] [Google Scholar]
- Spady D. K., Bilheimer D. W., Dietschy J. M. Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3499–3503. doi: 10.1073/pnas.80.11.3499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spady D. K., Cuthbert J. A., Willard M. N., Meidell R. S. Adenovirus-mediated transfer of a gene encoding cholesterol 7 alpha-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol. J Clin Invest. 1995 Aug;96(2):700–709. doi: 10.1172/JCI118113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spady D. K., Dietschy J. M. Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res. 1983 Mar;24(3):303–315. [PubMed] [Google Scholar]
- Spady D. K., Meddings J. B., Dietschy J. M. Kinetic constants for receptor-dependent and receptor-independent low density lipoprotein transport in the tissues of the rat and hamster. J Clin Invest. 1986 May;77(5):1474–1481. doi: 10.1172/JCI112460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein O., Halperin G., Stein Y. Biological labeling of very low density lipoproteins with cholesteryl linoleyl ether and its fate in the intact rat. Biochim Biophys Acta. 1980 Nov 7;620(2):247–260. doi: 10.1016/0005-2760(80)90206-4. [DOI] [PubMed] [Google Scholar]
- Stein Y., Dabach Y., Hollander G., Stein O. Cholesteryl ester transfer activity in hamster plasma: increase by fat and cholesterol rich diets. Biochim Biophys Acta. 1990 Jan 16;1042(1):138–141. doi: 10.1016/0005-2760(90)90068-9. [DOI] [PubMed] [Google Scholar]
- Tall A. R. Plasma cholesteryl ester transfer protein. J Lipid Res. 1993 Aug;34(8):1255–1274. [PubMed] [Google Scholar]
- Woollett L. A. Origin of cholesterol in the fetal golden Syrian hamster: contribution of de novo sterol synthesis and maternal-derived lipoprotein cholesterol. J Lipid Res. 1996 Jun;37(6):1246–1257. [PubMed] [Google Scholar]
- Woollett L. A., Osono Y., Herz J., Dietschy J. M. Apolipoprotein E competitively inhibits receptor-dependent low density lipoprotein uptake by the liver but has no effect on cholesterol absorption or synthesis in the mouse. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12500–12504. doi: 10.1073/pnas.92.26.12500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanni E. E., Zannis V. I., Blum C. B., Herbert P. N., Breslow J. L. Effect of egg cholesterol and dietary fats on plasma lipids, lipoproteins, and apoproteins of normal women consuming natural diets. J Lipid Res. 1987 May;28(5):518–527. [PubMed] [Google Scholar]