Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 1;99(7):1714–1720. doi: 10.1172/JCI119335

Pharmacological targeting of long QT mutant sodium channels.

D W Wang 1, K Yazawa 1, N Makita 1, A L George Jr 1, P B Bennett 1
PMCID: PMC507992  PMID: 9120016

Abstract

The congenital long QT syndrome (LQTS) is an inherited disorder characterized by a delay in cardiac cellular repolarization leading to cardiac arrhythmias and sudden death often in young people. One form of the disease (LQT3) involves mutations in the voltage-gated cardiac sodium channel. The potential for targeted suppression of the LQT defect was explored by heterologous expression of mutant channels in cultured human cells. Kinetic and steady state analysis revealed an enhanced apparent affinity for the predominantly charged, primary amine compound, mexiletine. The affinity of the mutant channels in the inactivated state was similar to the wild type (WT) channels (IC50 approximately 15-20 microM), but the late-opening channels were inhibited at significantly lower concentrations (IC50 = 2-3 microM) causing a preferential suppression of the late openings. The targeting of the defective behavior of the mutant channels has important implications for therapeutic intervention in this disease. The results provide insights for the selective suppression of the mutant phenotype by very low concentrations of drug and indicate that mexiletine equally suppresses the defect in all three known LQT3 mutants.

Full Text

The Full Text of this article is available as a PDF (204.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  2. An R. H., Bangalore R., Rosero S. Z., Kass R. S. Lidocaine block of LQT-3 mutant human Na+ channels. Circ Res. 1996 Jul;79(1):103–108. doi: 10.1161/01.res.79.1.103. [DOI] [PubMed] [Google Scholar]
  3. Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett P. B., Valenzuela C., Chen L. Q., Kallen R. G. On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomain. Circ Res. 1995 Sep;77(3):584–592. doi: 10.1161/01.res.77.3.584. [DOI] [PubMed] [Google Scholar]
  5. Bennett P. B., Yazawa K., Makita N., George A. L., Jr Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995 Aug 24;376(6542):683–685. doi: 10.1038/376683a0. [DOI] [PubMed] [Google Scholar]
  6. Clarkson C. W., Follmer C. H., Ten Eick R. E., Hondeghem L. M., Yeh J. Z. Evidence for two components of sodium channel block by lidocaine in isolated cardiac myocytes. Circ Res. 1988 Nov;63(5):869–878. doi: 10.1161/01.res.63.5.869. [DOI] [PubMed] [Google Scholar]
  7. Dumaine R., Wang Q., Keating M. T., Hartmann H. A., Schwartz P. J., Brown A. M., Kirsch G. E. Multiple mechanisms of Na+ channel--linked long-QT syndrome. Circ Res. 1996 May;78(5):916–924. doi: 10.1161/01.res.78.5.916. [DOI] [PubMed] [Google Scholar]
  8. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gellens M. E., George A. L., Jr, Chen L. Q., Chahine M., Horn R., Barchi R. L., Kallen R. G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):554–558. doi: 10.1073/pnas.89.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. George A. L., Jr, Varkony T. A., Drabkin H. A., Han J., Knops J. F., Finley W. H., Brown G. B., Ward D. C., Haas M. Assignment of the human heart tetrodotoxin-resistant voltage-gated Na+ channel alpha-subunit gene (SCN5A) to band 3p21. Cytogenet Cell Genet. 1995;68(1-2):67–70. doi: 10.1159/000133892. [DOI] [PubMed] [Google Scholar]
  11. Gilliam F. R., 3rd, Starmer C. F., Grant A. O. Blockade of rabbit atrial sodium channels by lidocaine. Characterization of continuous and frequency-dependent blocking. Circ Res. 1989 Sep;65(3):723–739. doi: 10.1161/01.res.65.3.723. [DOI] [PubMed] [Google Scholar]
  12. Grant A. O., Dietz M. A., Gilliam F. R., 3rd, Starmer C. F. Blockade of cardiac sodium channels by lidocaine. Single-channel analysis. Circ Res. 1989 Nov;65(5):1247–1262. doi: 10.1161/01.res.65.5.1247. [DOI] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hille B. The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol. 1977 Apr;69(4):475–496. doi: 10.1085/jgp.69.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
  17. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  18. Ono M., Sunami A., Hiraoka M. Interaction between external Na+ and mexiletine on Na+ channel in guinea-pig ventricular myocytes. Pflugers Arch. 1995 Nov;431(1):101–109. doi: 10.1007/BF00374382. [DOI] [PubMed] [Google Scholar]
  19. Ono M., Sunami A., Sawanobori T., Hiraoka M. External pH modifies sodium channel block by mexiletine in guinea pig ventricular myocytes. Cardiovasc Res. 1994 Jul;28(7):973–979. doi: 10.1093/cvr/28.7.973. [DOI] [PubMed] [Google Scholar]
  20. Ragsdale D. S., McPhee J. C., Scheuer T., Catterall W. A. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994 Sep 16;265(5179):1724–1728. doi: 10.1126/science.8085162. [DOI] [PubMed] [Google Scholar]
  21. Sanchez-Chapula J., Tsuda Y., Josephson I. R. Voltage- and use-dependent effects of lidocaine on sodium current in rat single ventricular cells. Circ Res. 1983 May;52(5):557–565. doi: 10.1161/01.res.52.5.557. [DOI] [PubMed] [Google Scholar]
  22. Schwartz P. J., Periti M., Malliani A. The long Q-T syndrome. Am Heart J. 1975 Mar;89(3):378–390. doi: 10.1016/0002-8703(75)90089-7. [DOI] [PubMed] [Google Scholar]
  23. Schwartz P. J., Priori S. G., Locati E. H., Napolitano C., Cantù F., Towbin J. A., Keating M. T., Hammoude H., Brown A. M., Chen L. S. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation. 1995 Dec 15;92(12):3381–3386. doi: 10.1161/01.cir.92.12.3381. [DOI] [PubMed] [Google Scholar]
  24. Schwarz W., Palade P. T., Hille B. Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J. 1977 Dec;20(3):343–368. doi: 10.1016/S0006-3495(77)85554-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sigworth F. J. The conductance of sodium channels under conditions of reduced current at the node of Ranvier. J Physiol. 1980 Oct;307:131–142. doi: 10.1113/jphysiol.1980.sp013427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sunami A., Fan Z., Sawanobori T., Hiraoka M. Use-dependent block of Na+ currents by mexiletine at the single channel level in guinea-pig ventricular myocytes. Br J Pharmacol. 1993 Sep;110(1):183–192. doi: 10.1111/j.1476-5381.1993.tb13790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Towbin J. A., Li H., Taggart R. T., Lehmann M. H., Schwartz P. J., Satler C. A., Ayyagari R., Robinson J. L., Moss A., Hejtmancik J. F. Evidence of genetic heterogeneity in Romano-Ward long QT syndrome. Analysis of 23 families. Circulation. 1994 Dec;90(6):2635–2644. doi: 10.1161/01.cir.90.6.2635. [DOI] [PubMed] [Google Scholar]
  29. Valenzuela C., Bennett P. B., Jr Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin. Biophys J. 1994 Jul;67(1):161–171. doi: 10.1016/S0006-3495(94)80465-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang D. W., George A. L., Jr, Bennett P. B. Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels. Biophys J. 1996 Jan;70(1):238–245. doi: 10.1016/S0006-3495(96)79566-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang D. W., Nie L., George A. L., Jr, Bennett P. B. Distinct local anesthetic affinities in Na+ channel subtypes. Biophys J. 1996 Apr;70(4):1700–1708. doi: 10.1016/S0006-3495(96)79732-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang D. W., Yazawa K., George A. L., Jr, Bennett P. B. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13200–13205. doi: 10.1073/pnas.93.23.13200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang Q., Shen J., Li Z., Timothy K., Vincent G. M., Priori S. G., Schwartz P. J., Keating M. T. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet. 1995 Sep;4(9):1603–1607. doi: 10.1093/hmg/4.9.1603. [DOI] [PubMed] [Google Scholar]
  34. Wang Q., Shen J., Splawski I., Atkinson D., Li Z., Robinson J. L., Moss A. J., Towbin J. A., Keating M. T. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995 Mar 10;80(5):805–811. doi: 10.1016/0092-8674(95)90359-3. [DOI] [PubMed] [Google Scholar]
  35. Yatani A., Akaike N. Blockage of the sodium current in isolated single cells from rat ventricle with mexiletine and disopyramide. J Mol Cell Cardiol. 1985 May;17(5):467–476. doi: 10.1016/s0022-2828(85)80051-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES