Abstract
Clinical conditions associated with local or systemic hypoxemia can lead to prothrombotic diatheses. This study was undertaken to establish a model of whole-animal hypoxia wherein oxygen deprivation by itself would be sufficient to trigger tissue thrombosis. Furthermore, this model was used to test the hypothesis that hypoxia-induced mononuclear phagocyte (MP) recruitment and tissue factor (TF) expression may trigger the local deposition of fibrin which occurs in response to oxygen deprivation. Using an environmental chamber in which inhaled oxygen tension was lowered to 6%, hypoxic induction of thrombosis was demonstrated in murine pulmonary vasculature by 8 h based upon: (a) immunohistologic evidence of fibrin formation in hypoxic lung tissue using an antifibrin antibody, confirmed by 22.5-nm strand periodicity by electron microscopy; (b) immunoblots revealing fibrin gamma-gamma chain dimers in lungs from hypoxic but not normoxic mice or hypoxic mice treated with hirudin; (c) accelerated deposition of 125I-fibrin/fibrinogen and 111In-labeled platelets in the lung tissue of hypoxic compared with normoxic animals; (d) reduction of tissue 125I-fibrin/fibrinogen accumulation in animals which had either been treated with hirudin or depleted of platelets before hypoxic exposure. Because immunohistochemical analysis of hypoxic pulmonary tissue revealed strong MP staining for TF, confirmed by increased TF RNA in hypoxic lungs, and because 111In-labeled murine MPs accumulated in hypoxic pulmonary tissue, we evaluated whether recruited MPs might be responsible for initiation of hypoxia-induced thrombosis. This hypothesis was supported by several lines of evidence: (a) MP depletion before hypoxia reduced thrombosis, as measured by reduced 125I-fibrin/fibrinogen deposition and reduced accumulation of cross-linked fibrin by immunoblot; (b) isolated murine MPs demonstrated increased TF immunostaining when exposed to hypoxia; and (c) administration of an anti-rabbit TF antibody that cross-reacts with murine TF decreased 125I-fibrin/fibrinogen accumulation and cross-linked fibrin accumulation in response to hypoxia in vivo. In summary, these studies using a novel in vivo model suggest that MP accumulation and TF expression may promote hypoxia-induced thrombosis.
Full Text
The Full Text of this article is available as a PDF (882.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson F. A., Jr, Wheeler H. B., Goldberg R. J., Hosmer D. W., Patwardhan N. A., Jovanovic B., Forcier A., Dalen J. E. A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study. Arch Intern Med. 1991 May;151(5):933–938. [PubMed] [Google Scholar]
- Andrews B. S., Rehemtulla A., Fowler B. J., Edgington T. S., Mackman N. Conservation of tissue factor primary sequence among three mammalian species. Gene. 1991 Feb 15;98(2):265–269. doi: 10.1016/0378-1119(91)90184-d. [DOI] [PubMed] [Google Scholar]
- Arnould T., Michiels C., Remacle J. Increased PMN adherence on endothelial cells after hypoxia: involvement of PAF, CD18/CD11b, and ICAM-1. Am J Physiol. 1993 May;264(5 Pt 1):C1102–C1110. doi: 10.1152/ajpcell.1993.264.5.C1102. [DOI] [PubMed] [Google Scholar]
- Broze G. J., Jr, Leykam J. E., Schwartz B. D., Miletich J. P. Purification of human brain tissue factor. J Biol Chem. 1985 Sep 15;260(20):10917–10920. [PubMed] [Google Scholar]
- Carmeliet P., Schoonjans L., Kieckens L., Ream B., Degen J., Bronson R., De Vos R., van den Oord J. J., Collen D., Mulligan R. C. Physiological consequences of loss of plasminogen activator gene function in mice. Nature. 1994 Mar 31;368(6470):419–424. doi: 10.1038/368419a0. [DOI] [PubMed] [Google Scholar]
- Carmeliet P., Stassen J. M., Schoonjans L., Ream B., van den Oord J. J., De Mol M., Mulligan R. C., Collen D. Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J Clin Invest. 1993 Dec;92(6):2756–2760. doi: 10.1172/JCI116893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compeau C. G., Ma J., DeCampos K. N., Waddell T. K., Brisseau G. F., Slutsky A. S., Rotstein O. D. In situ ischemia and hypoxia enhance alveolar macrophage tissue factor expression. Am J Respir Cell Mol Biol. 1994 Oct;11(4):446–455. doi: 10.1165/ajrcmb.11.4.7917312. [DOI] [PubMed] [Google Scholar]
- Connolly E. S., Jr, Winfree C. J., Springer T. A., Naka Y., Liao H., Yan S. D., Stern D. M., Solomon R. A., Gutierrez-Ramos J. C., Pinsky D. J. Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest. 1996 Jan 1;97(1):209–216. doi: 10.1172/JCI118392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coon W. W. Epidemiology of venous thromboembolism. Ann Surg. 1977 Aug;186(2):149–164. doi: 10.1097/00000658-197708000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards R. L., Rickles F. R., Bobrove A. M. Mononuclear cell tissue factor: cell of origin and requirements for activation. Blood. 1979 Aug;54(2):359–370. [PubMed] [Google Scholar]
- Emeis J. J., Lindeman J., Nieuwenhuizen W. Immunoenzyme histochemical localization of fibrin degradation products in tissues. Am J Pathol. 1981 Jun;103(3):337–344. [PMC free article] [PubMed] [Google Scholar]
- Folts J. D., Crowell E. B., Jr, Rowe G. G. Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation. 1976 Sep;54(3):365–370. doi: 10.1161/01.cir.54.3.365. [DOI] [PubMed] [Google Scholar]
- Francis C. W., Marder V. J., Martin S. E. Plasmic degradation of crosslinked fibrin. I. Structural analysis of the particulate clot and identification of new macromolecular-soluble complexes. Blood. 1980 Sep;56(3):456–464. [PubMed] [Google Scholar]
- Geerts W. H., Code K. I., Jay R. M., Chen E., Szalai J. P. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994 Dec 15;331(24):1601–1606. doi: 10.1056/NEJM199412153312401. [DOI] [PubMed] [Google Scholar]
- Gregory S. A., Edgington T. S. Tissue factor induction in human monocytes. Two distinct mechanisms displayed by different alloantigen-responsive T cell clones. J Clin Invest. 1985 Dec;76(6):2440–2445. doi: 10.1172/JCI112260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamer J. D., Malone P. C., Silver I. A. The PO2 in venous valve pockets: its possible bearing on thrombogenesis. Br J Surg. 1981 Mar;68(3):166–170. doi: 10.1002/bjs.1800680308. [DOI] [PubMed] [Google Scholar]
- Hartzell S., Ryder K., Lanahan A., Lau L. F., Nathan D. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor. Mol Cell Biol. 1989 Jun;9(6):2567–2573. doi: 10.1128/mcb.9.6.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karakurum M., Shreeniwas R., Chen J., Pinsky D., Yan S. D., Anderson M., Sunouchi K., Major J., Hamilton T., Kuwabara K. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest. 1994 Apr;93(4):1564–1570. doi: 10.1172/JCI117135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knighton D. R., Hunt T. K., Scheuenstuhl H., Halliday B. J., Werb Z., Banda M. J. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science. 1983 Sep 23;221(4617):1283–1285. doi: 10.1126/science.6612342. [DOI] [PubMed] [Google Scholar]
- Kuwabara K., Ogawa S., Matsumoto M., Koga S., Clauss M., Pinsky D. J., Lyn P., Leavy J., Witte L., Joseph-Silverstein J. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4606–4610. doi: 10.1073/pnas.92.10.4606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lahiri B., Koehn J. A., Canfield R. E., Birken S., Lewis J. Development of an immunoassay for the COOH-terminal region of the gamma chains of human fibrin. Thromb Res. 1981 Jul 1;23(1-2):103–112. doi: 10.1016/0049-3848(81)90243-7. [DOI] [PubMed] [Google Scholar]
- Lee S. H., Starkey P. M., Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med. 1985 Mar 1;161(3):475–489. doi: 10.1084/jem.161.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malone P. C., Morris C. J. The sequestration and margination of platelets and leucocytes in veins during conditions of hypokinetic and anaemic hypoxia: potential significance in clinical postoperative venous thrombosis. J Pathol. 1978 Jul;125(3):119–129. doi: 10.1002/path.1711250302. [DOI] [PubMed] [Google Scholar]
- Markwardt F. Hirudin and derivatives as anticoagulant agents. Thromb Haemost. 1991 Jul 12;66(1):141–152. [PubMed] [Google Scholar]
- Maugeri N., Evangelista V., Celardo A., Dell'Elba G., Martelli N., Piccardoni P., de Gaetano G., Cerletti C. Polymorphonuclear leukocyte-platelet interaction: role of P-selectin in thromboxane B2 and leukotriene C4 cooperative synthesis. Thromb Haemost. 1994 Sep;72(3):450–456. [PubMed] [Google Scholar]
- Naka Y., Chowdhury N. C., Liao H., Roy D. K., Oz M. C., Michler R. E., Pinsky D. J. Enhanced preservation of orthotopically transplanted rat lungs by nitroglycerin but not hydralazine. Requirement for graft vascular homeostasis beyond harvest vasodilation. Circ Res. 1995 May;76(5):900–906. doi: 10.1161/01.res.76.5.900. [DOI] [PubMed] [Google Scholar]
- Ogawa S., Gerlach H., Esposito C., Pasagian-Macaulay A., Brett J., Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J Clin Invest. 1990 Apr;85(4):1090–1098. doi: 10.1172/JCI114540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawa S., Shreeniwas R., Brett J., Clauss M., Furie M., Stern D. M. The effect of hypoxia on capillary endothelial cell function: modulation of barrier and coagulant function. Br J Haematol. 1990 Aug;75(4):517–524. doi: 10.1111/j.1365-2141.1990.tb07792.x. [DOI] [PubMed] [Google Scholar]
- Olman M. A., Mackman N., Gladson C. L., Moser K. M., Loskutoff D. J. Changes in procoagulant and fibrinolytic gene expression during bleomycin-induced lung injury in the mouse. J Clin Invest. 1995 Sep;96(3):1621–1630. doi: 10.1172/JCI118201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinsky D. J., Naka Y., Liao H., Oz M. C., Wagner D. D., Mayadas T. N., Johnson R. C., Hynes R. O., Heath M., Lawson C. A. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J Clin Invest. 1996 Jan 15;97(2):493–500. doi: 10.1172/JCI118440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao L. V., Hoang A. D. Purification and characterization of rabbit tissue factor. Thromb Res. 1989 Oct 1;56(1):109–118. doi: 10.1016/0049-3848(89)90013-3. [DOI] [PubMed] [Google Scholar]
- Romson J. L., Haack D. W., Lucchesi B. R. Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti-thrombotic agents. Thromb Res. 1980 Mar 15;17(6):841–853. doi: 10.1016/0049-3848(80)90249-2. [DOI] [PubMed] [Google Scholar]
- Shatos M. A., Doherty J. M., Orfeo T., Hoak J. C., Collen D., Stump D. C. Modulation of the fibrinolytic response of cultured human vascular endothelium by extracellularly generated oxygen radicals. J Biol Chem. 1992 Jan 5;267(1):597–601. [PubMed] [Google Scholar]
- Tomasulo P. A., Levin J., Murphy P. A., Winkelstein J. A. Biological activities of tritiated endotoxins: correlation of the Limulus lysate assay with rabbit pyrogen and complement-activation assays for endotoxin. J Lab Clin Med. 1977 Feb;89(2):308–315. [PubMed] [Google Scholar]
- Unanue E. R. Properties and some uses of anti-macrophage antibodies. Nature. 1968 Apr 6;218(5136):36–38. doi: 10.1038/218036a0. [DOI] [PubMed] [Google Scholar]
- Weiler-Guettler H., Aird W. C., Husain M., Rayburn H., Rosenberg R. D. Targeting of transgene expression to the vascular endothelium of mice by homologous recombination at the thrombomodulin locus. Circ Res. 1996 Feb;78(2):180–187. doi: 10.1161/01.res.78.2.180. [DOI] [PubMed] [Google Scholar]
- Weisel J. W. The electron microscope band pattern of human fibrin: various stains, lateral order, and carbohydrate localization. J Ultrastruct Mol Struct Res. 1986 Jul-Sep;96(1-3):176–188. doi: 10.1016/0889-1605(86)90019-4. [DOI] [PubMed] [Google Scholar]
- Yan S. D., Chen X., Schmidt A. M., Brett J., Godman G., Zou Y. S., Scott C. W., Caputo C., Frappier T., Smith M. A. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7787–7791. doi: 10.1073/pnas.91.16.7787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasuda T., Gold H. K., Fallon J. T., Leinbach R. C., Garabedian H. D., Guerrero J. L., Collen D. A canine model of coronary artery thrombosis with superimposed high grade stenosis for the investigation of rethrombosis after thrombolysis. J Am Coll Cardiol. 1989 May;13(6):1409–1414. doi: 10.1016/0735-1097(89)90319-7. [DOI] [PubMed] [Google Scholar]
- Zhu Z., Ghose T., Iles S., Yang C., Lee S. H., Fernandez L. A., Lee C. L. Pharmacokinetics, biodistribution and tumor localization of two anti-human B-cell chronic lymphocytic leukemia monoclonal antibodies and their F(ab)'2 fragments in a xenograft model. Cancer Lett. 1994 Jan 15;76(1):31–44. doi: 10.1016/0304-3835(94)90131-7. [DOI] [PubMed] [Google Scholar]
- Zimmerman G. A., McIntyre T. M., Prescott S. M. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J Clin Invest. 1985 Dec;76(6):2235–2246. doi: 10.1172/JCI112232. [DOI] [PMC free article] [PubMed] [Google Scholar]