Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 1;99(7):1798–1804. doi: 10.1172/JCI119344

Cytokine signaling through the novel tyrosine kinase RAFTK in Kaposi's sarcoma cells.

Z Y Liu 1, R K Ganju 1, J F Wang 1, M A Ona 1, W C Hatch 1, T Zheng 1, S Avraham 1, P Gill 1, J E Groopman 1
PMCID: PMC508001  PMID: 9120025

Abstract

A number of cytokines, including basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), oncostatin M (OSM), IL-6, and tumor necrosis factor alpha (TNF-alpha), have been postulated to have a role in the pathogenesis of Kaposi's sarcoma (KS). The proliferative effects of bFGF and OSM may be via their reported activation of the c-Jun NH2-terminal kinase (JNK) signaling pathway in KS cells. We now report that KS cells express a recently identified focal adhesion kinase termed RAFTK which appears in other cell systems to coordinate surface signals between cytokine and integrin receptors and the cytoskeleton as well as act downstream to modulate JNK activation. We also report that the tyrosine kinase receptor FLT-4, present on normal lymphatic endothelium, is robustly expressed in KS cells. Treatment of KS cells with VEGF-related protein (VRP), the ligand for the FLT-4 receptor, as well as with the cytokines bFGF, OSM, IL-6, VEGF, or TNF-alpha resulted in phosphorylation and activation of RAFTK. Following its activation, there was an enhanced association of RAFTK with the cytoskeletal protein paxillin. This association was mediated by the hydrophobic COOH-terminal domain of the kinase. Furthermore, JNK activity was increased in KS cells after VEGF or VRP stimulation. We postulate that in these tumor cells RAFTK may be activated by a diverse group of stimulatory cytokines and facilitate signal transduction to the cytoskeleton and downstream to the growth promoting JNK pathway.

Full Text

The Full Text of this article is available as a PDF (316.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaral M. C., Miles S., Kumar G., Nel A. E. Oncostatin-M stimulates tyrosine protein phosphorylation in parallel with the activation of p42MAPK/ERK-2 in Kaposi's cells. Evidence that this pathway is important in Kaposi cell growth. J Clin Invest. 1993 Aug;92(2):848–857. doi: 10.1172/JCI116659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angel P., Hattori K., Smeal T., Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988 Dec 2;55(5):875–885. doi: 10.1016/0092-8674(88)90143-2. [DOI] [PubMed] [Google Scholar]
  3. Avraham S., London R., Fu Y., Ota S., Hiregowdara D., Li J., Jiang S., Pasztor L. M., White R. A., Groopman J. E. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem. 1995 Nov 17;270(46):27742–27751. doi: 10.1074/jbc.270.46.27742. [DOI] [PubMed] [Google Scholar]
  4. Barillari G., Buonaguro L., Fiorelli V., Hoffman J., Michaels F., Gallo R. C., Ensoli B. Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression. Implications for AIDS-Kaposi's sarcoma pathogenesis. J Immunol. 1992 Dec 1;149(11):3727–3734. [PubMed] [Google Scholar]
  5. Bellis S. L., Miller J. T., Turner C. E. Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J Biol Chem. 1995 Jul 21;270(29):17437–17441. doi: 10.1074/jbc.270.29.17437. [DOI] [PubMed] [Google Scholar]
  6. Brown L. F., Tognazzi K., Dvorak H. F., Harrist T. J. Strong expression of kinase insert domain-containing receptor, a vascular permeability factor/vascular endothelial growth factor receptor in AIDS-associated Kaposi's sarcoma and cutaneous angiosarcoma. Am J Pathol. 1996 Apr;148(4):1065–1074. [PMC free article] [PubMed] [Google Scholar]
  7. Brown T. J., Rowe J. M., Liu J. W., Shoyab M. Regulation of IL-6 expression by oncostatin M. J Immunol. 1991 Oct 1;147(7):2175–2180. [PubMed] [Google Scholar]
  8. Buonaguro L., Barillari G., Chang H. K., Bohan C. A., Kao V., Morgan R., Gallo R. C., Ensoli B. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol. 1992 Dec;66(12):7159–7167. doi: 10.1128/jvi.66.12.7159-7167.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buonaguro L., Buonaguro F. M., Giraldo G., Ensoli B. The human immunodeficiency virus type 1 Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure. J Virol. 1994 Apr;68(4):2677–2682. doi: 10.1128/jvi.68.4.2677-2682.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cai J., Gill P. S., Masood R., Chandrasoma P., Jung B., Law R. E., Radka S. F. Oncostatin-M is an autocrine growth factor in Kaposi's sarcoma. Am J Pathol. 1994 Jul;145(1):74–79. [PMC free article] [PubMed] [Google Scholar]
  11. Chang Y., Cesarman E., Pessin M. S., Lee F., Culpepper J., Knowles D. M., Moore P. S. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science. 1994 Dec 16;266(5192):1865–1869. doi: 10.1126/science.7997879. [DOI] [PubMed] [Google Scholar]
  12. Clark E. A., Brugge J. S. Integrins and signal transduction pathways: the road taken. Science. 1995 Apr 14;268(5208):233–239. doi: 10.1126/science.7716514. [DOI] [PubMed] [Google Scholar]
  13. Dictor M. Vascular remodeling in Kaposi's sarcoma and avian hemangiomatosis: relation to the vertebrate lymphatic system. Lymphology. 1988 Mar;21(1):53–60. [PubMed] [Google Scholar]
  14. Dorfman R. F. Kaposi's sarcoma: evidence supporting its origin from the lymphatic system. Lymphology. 1988 Mar;21(1):45–52. [PubMed] [Google Scholar]
  15. Dérijard B., Hibi M., Wu I. H., Barrett T., Su B., Deng T., Karin M., Davis R. J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. doi: 10.1016/0092-8674(94)90380-8. [DOI] [PubMed] [Google Scholar]
  16. Ensoli B., Barillari G., Gallo R. C. Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi's sarcoma. Immunol Rev. 1992 Jun;127:147–155. doi: 10.1111/j.1600-065x.1992.tb01412.x. [DOI] [PubMed] [Google Scholar]
  17. Ensoli B., Barillari G., Salahuddin S. Z., Gallo R. C., Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature. 1990 May 3;345(6270):84–86. doi: 10.1038/345084a0. [DOI] [PubMed] [Google Scholar]
  18. Ensoli B., Gendelman R., Markham P., Fiorelli V., Colombini S., Raffeld M., Cafaro A., Chang H. K., Brady J. N., Gallo R. C. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature. 1994 Oct 20;371(6499):674–680. doi: 10.1038/371674a0. [DOI] [PubMed] [Google Scholar]
  19. Ensoli B., Nakamura S., Salahuddin S. Z., Biberfeld P., Larsson L., Beaver B., Wong-Staal F., Gallo R. C. AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science. 1989 Jan 13;243(4888):223–226. doi: 10.1126/science.2643161. [DOI] [PubMed] [Google Scholar]
  20. Faris M., Ensoli B., Stahl N., Yancopoulos G., Nguyen A., Wang S., Nel A. E. Differential activation of the extracellular signal-regulated kinase, Jun kinase and Janus kinase-Stat pathways by oncostatin M and basic fibroblast growth factor in AIDS-derived Kaposi's sarcoma cells. AIDS. 1996 Apr;10(4):369–378. doi: 10.1097/00002030-199604000-00004. [DOI] [PubMed] [Google Scholar]
  21. Fiorelli V., Gendelman R., Samaniego F., Markham P. D., Ensoli B. Cytokines from activated T cells induce normal endothelial cells to acquire the phenotypic and functional features of AIDS-Kaposi's sarcoma spindle cells. J Clin Invest. 1995 Apr;95(4):1723–1734. doi: 10.1172/JCI117849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ganem D. AIDS. Viruses, cytokines and Kaposi's sarcoma. Curr Biol. 1995 May 1;5(5):469–471. doi: 10.1016/s0960-9822(95)00093-5. [DOI] [PubMed] [Google Scholar]
  23. Guo W. X., Antakly T., Cadotte M., Kachra Z., Kunkel L., Masood R., Gill P. Expression and cytokine regulation of glucocorticoid receptors in Kaposi's sarcoma. Am J Pathol. 1996 Jun;148(6):1999–2008. [PMC free article] [PubMed] [Google Scholar]
  24. Hewett P. W., Murray J. C. Coexpression of flt-1, flt-4 and KDR in freshly isolated and cultured human endothelial cells. Biochem Biophys Res Commun. 1996 Apr 25;221(3):697–702. doi: 10.1006/bbrc.1996.0659. [DOI] [PubMed] [Google Scholar]
  25. Hibi M., Lin A., Smeal T., Minden A., Karin M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993 Nov;7(11):2135–2148. doi: 10.1101/gad.7.11.2135. [DOI] [PubMed] [Google Scholar]
  26. Huang Y. Q., Li J. J., Kim K. S., Nicolaides A., Zhang W. G., Le J., Poiesz B. J., Friedman-Kien A. E. HIV-1 infection and modulation of cytokine and growth factor expression in Kaposi's sarcoma-derived cells in vitro. AIDS. 1993 Mar;7(3):317–322. doi: 10.1097/00002030-199303000-00002. [DOI] [PubMed] [Google Scholar]
  27. Huang Y. Q., Li J. J., Zhang W. G., Feiner D., Friedman-Kien A. E. Transcription of human herpesvirus-like agent (HHV-8) in Kaposi's sarcoma. J Clin Invest. 1996 Jun 15;97(12):2803–2806. doi: 10.1172/JCI118735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Humphrey R. W., O'Brien T. R., Newcomb F. M., Nishihara H., Wyvill K. M., Ramos G. A., Saville M. W., Goedert J. J., Straus S. E., Yarchoan R. Kaposi's sarcoma (KS)-associated herpesvirus-like DNA sequences in peripheral blood mononuclear cells: association with KS and persistence in patients receiving anti-herpesvirus drugs. Blood. 1996 Jul 1;88(1):297–301. [PubMed] [Google Scholar]
  29. Joukov V., Pajusola K., Kaipainen A., Chilov D., Lahtinen I., Kukk E., Saksela O., Kalkkinen N., Alitalo K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996 Jan 15;15(2):290–298. [PMC free article] [PubMed] [Google Scholar]
  30. Kaipainen A., Korhonen J., Mustonen T., van Hinsbergh V. W., Fang G. H., Dumont D., Breitman M., Alitalo K. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3566–3570. doi: 10.1073/pnas.92.8.3566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kaipainen A., Korhonen J., Pajusola K., Aprelikova O., Persico M. G., Terman B. I., Alitalo K. The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J Exp Med. 1993 Dec 1;178(6):2077–2088. doi: 10.1084/jem.178.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kallunki T., Su B., Tsigelny I., Sluss H. K., Dérijard B., Moore G., Davis R., Karin M. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 1994 Dec 15;8(24):2996–3007. doi: 10.1101/gad.8.24.2996. [DOI] [PubMed] [Google Scholar]
  33. Lee J., Gray A., Yuan J., Luoh S. M., Avraham H., Wood W. I. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1988–1992. doi: 10.1073/pnas.93.5.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lev S., Moreno H., Martinez R., Canoll P., Peles E., Musacchio J. M., Plowman G. D., Rudy B., Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737–745. doi: 10.1038/376737a0. [DOI] [PubMed] [Google Scholar]
  35. Li J., Avraham H., Rogers R. A., Raja S., Avraham S. Characterization of RAFTK, a novel focal adhesion kinase, and its integrin-dependent phosphorylation and activation in megakaryocytes. Blood. 1996 Jul 15;88(2):417–428. [PubMed] [Google Scholar]
  36. Maier J. A., Mariotti M., Albini A., Comi P., Prat M., Comogilio P. M., Soria M. R. Over-expression of hepatocyte growth factor in human Kaposi's sarcoma. Int J Cancer. 1996 Jan 17;65(2):168–172. doi: 10.1002/(SICI)1097-0215(19960117)65:2<168::AID-IJC7>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  37. Masood R., Husain S. R., Rahman A., Gill P. Potentiation of cytotoxicity of Kaposi's sarcoma related to immunodeficiency syndrome (AIDS) by liposome-encapsulated doxorubicin. AIDS Res Hum Retroviruses. 1993 Aug;9(8):741–746. doi: 10.1089/aid.1993.9.741. [DOI] [PubMed] [Google Scholar]
  38. Masood R., Lunardi-Iskandar Y., Jean L. F., Murphy J. R., Waters C., Gallo R. C., Gill P. Inhibition of AIDS-associated Kaposi's sarcoma cell growth by DAB389-interleukin 6. AIDS Res Hum Retroviruses. 1994 Aug;10(8):969–975. doi: 10.1089/aid.1994.10.969. [DOI] [PubMed] [Google Scholar]
  39. Miles S. A. Pathogenesis of HIV-related Kaposi's sarcoma. Curr Opin Oncol. 1994 Sep;6(5):497–502. doi: 10.1097/00001622-199409000-00009. [DOI] [PubMed] [Google Scholar]
  40. Miles S. A., Rezai A. R., Salazar-González J. F., Vander Meyden M., Stevens R. H., Logan D. M., Mitsuyasu R. T., Taga T., Hirano T., Kishimoto T. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4068–4072. doi: 10.1073/pnas.87.11.4068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nair B. C., DeVico A. L., Nakamura S., Copeland T. D., Chen Y., Patel A., O'Neil T., Oroszlan S., Gallo R. C., Sarngadharan M. G. Identification of a major growth factor for AIDS-Kaposi's sarcoma cells as oncostatin M. Science. 1992 Mar 13;255(5050):1430–1432. doi: 10.1126/science.1542792. [DOI] [PubMed] [Google Scholar]
  42. Salgia R., Avraham S., Pisick E., Li J. L., Raja S., Greenfield E. A., Sattler M., Avraham H., Griffin J. D. The related adhesion focal tyrosine kinase forms a complex with paxillin in hematopoietic cells. J Biol Chem. 1996 Dec 6;271(49):31222–31226. doi: 10.1074/jbc.271.49.31222. [DOI] [PubMed] [Google Scholar]
  43. Sasaki H., Nagura K., Ishino M., Tobioka H., Kotani K., Sasaki T. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995 Sep 8;270(36):21206–21219. doi: 10.1074/jbc.270.36.21206. [DOI] [PubMed] [Google Scholar]
  44. Sciacca F. L., Stürzl M., Bussolino F., Sironi M., Brandstetter H., Zietz C., Zhou D., Matteucci C., Peri G., Sozzani S. Expression of adhesion molecules, platelet-activating factor, and chemokines by Kaposi's sarcoma cells. J Immunol. 1994 Nov 15;153(10):4816–4825. [PubMed] [Google Scholar]
  45. Tokiwa G., Dikic I., Lev S., Schlessinger J. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996 Aug 9;273(5276):792–794. doi: 10.1126/science.273.5276.792. [DOI] [PubMed] [Google Scholar]
  46. Weindel K., Marmé D., Weich H. A. AIDS-associated Kaposi's sarcoma cells in culture express vascular endothelial growth factor. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1167–1174. doi: 10.1016/s0006-291x(05)80313-4. [DOI] [PubMed] [Google Scholar]
  47. Yang J., Hagan M. K., Offermann M. K. Induction of IL-6 gene expression in Kaposi's sarcoma cells. J Immunol. 1994 Jan 15;152(2):943–955. [PubMed] [Google Scholar]
  48. Zhong W., Wang H., Herndier B., Ganem D. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6641–6646. doi: 10.1073/pnas.93.13.6641. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES