Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 15;99(8):1852–1863. doi: 10.1172/JCI119352

Role of renal aquaporins in escape from vasopressin-induced antidiuresis in rat.

C A Ecelbarger 1, S Nielsen 1, B R Olson 1, T Murase 1, E A Baker 1, M A Knepper 1, J G Verbalis 1
PMCID: PMC508009  PMID: 9109429

Abstract

The purpose of this study was to investigate whether escape from vasopressin-induced antidiuresis is associated with altered regulation of any of the known aquaporin water channels. After 4-d pretreatment with 1-deamino-[8-D-arginine]-vasopressin (dDAVP) by osmotic mini-pump, rats were divided into two groups: control (continued dDAVP) and water-loaded (continued dDAVP plus a daily oral water load). A significant increase in urine volume in the water-loaded rats was observed by the second day of water loading, indicating onset of vasopressin escape. The onset of escape coincided temporally with a marked decrease in renal aquaporin-2 protein (measured by semiquantitative immunoblotting), which began at day 2 and fell to 17% of control levels by day 3. In contrast, there was no decrease in the renal expression of aquaporins 1, 3, or 4. The marked suppression of whole kidney aquaporin-2 protein was accompanied by a concomitant suppression of whole kidney aquaporin-2 mRNA levels. Immunocytochemical localization and differential centrifugation studies demonstrated that trafficking of aquaporin-2 to the plasma membrane remained intact during vasopressin escape. The results suggest that escape from vasopressin-induced antidiuresis is attributable, at least in part, to a vasopressin-independent decrease in aquaporin-2 water channel expression in the renal collecting duct.

Full Text

The Full Text of this article is available as a PDF (555.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan W. Y. A study on the mechanism of vasopressin escape: effects of chronic vasopressin and overhydration on renal tissue osmolality and electrolytes in dogs. J Pharmacol Exp Ther. 1973 Jan;184(1):244–251. [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. DiGiovanni S. R., Nielsen S., Christensen E. I., Knepper M. A. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984–8988. doi: 10.1073/pnas.91.19.8984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ecelbarger C. A., Terris J., Frindt G., Echevarria M., Marples D., Nielsen S., Knepper M. A. Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol. 1995 Nov;269(5 Pt 2):F663–F672. doi: 10.1152/ajprenal.1995.269.5.F663. [DOI] [PubMed] [Google Scholar]
  5. Echevarria M., Windhager E. E., Tate S. S., Frindt G. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10997–11001. doi: 10.1073/pnas.91.23.10997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flamion B., Spring K. R. Water permeability of apical and basolateral cell membranes of rat inner medullary collecting duct. Am J Physiol. 1990 Dec;259(6 Pt 2):F986–F999. doi: 10.1152/ajprenal.1990.259.6.F986. [DOI] [PubMed] [Google Scholar]
  7. Frigeri A., Gropper M. A., Turck C. W., Verkman A. S. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4328–4331. doi: 10.1073/pnas.92.10.4328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujita N., Ishikawa S. E., Sasaki S., Fujisawa G., Fushimi K., Marumo F., Saito T. Role of water channel AQP-CD in water retention in SIADH and cirrhotic rats. Am J Physiol. 1995 Dec;269(6 Pt 2):F926–F931. doi: 10.1152/ajprenal.1995.269.6.F926. [DOI] [PubMed] [Google Scholar]
  9. Fushimi K., Uchida S., Hara Y., Hirata Y., Marumo F., Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993 Feb 11;361(6412):549–552. doi: 10.1038/361549a0. [DOI] [PubMed] [Google Scholar]
  10. Goldberg H., Clayman P., Skorecki K. Mechanism of Li inhibition of vasopressin-sensitive adenylate cyclase in cultured renal epithelial cells. Am J Physiol. 1988 Nov;255(5 Pt 2):F995–1002. doi: 10.1152/ajprenal.1988.255.5.F995. [DOI] [PubMed] [Google Scholar]
  11. Gross P. A., Anderson R. J. Effects of DDAVP and AVP on sodium and water balance in conscious rat. Am J Physiol. 1982 Nov;243(5):R512–R519. doi: 10.1152/ajpregu.1982.243.5.R512. [DOI] [PubMed] [Google Scholar]
  12. Hasegawa H., Ma T., Skach W., Matthay M. A., Verkman A. S. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem. 1994 Feb 25;269(8):5497–5500. [PubMed] [Google Scholar]
  13. Ishibashi K., Sasaki S., Fushimi K., Uchida S., Kuwahara M., Saito H., Furukawa T., Nakajima K., Yamaguchi Y., Gojobori T. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6269–6273. doi: 10.1073/pnas.91.14.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jung J. S., Bhat R. V., Preston G. M., Guggino W. B., Baraban J. M., Agre P. Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):13052–13056. doi: 10.1073/pnas.91.26.13052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim J. K., Summer S. N., Berl T. The cyclic AMP system in the inner medullary collecting duct of the potassium-depleted rat. Kidney Int. 1984 Oct;26(4):384–391. doi: 10.1038/ki.1984.186. [DOI] [PubMed] [Google Scholar]
  16. Kishore B. K., Mandon B., Oza N. B., DiGiovanni S. R., Coleman R. A., Ostrowski N. L., Wade J. B., Knepper M. A. Rat renal arcade segment expresses vasopressin-regulated water channel and vasopressin V2 receptor. J Clin Invest. 1996 Jun 15;97(12):2763–2771. doi: 10.1172/JCI118731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knepper M. A. The aquaporin family of molecular water channels. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6255–6258. doi: 10.1073/pnas.91.14.6255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LEVINSKY N. G., DAVIDSON D. G., BERLINER R. W. Changes in urine concentration during prolonged administration of vasopressin and water. Am J Physiol. 1959 Feb;196(2):451–456. doi: 10.1152/ajplegacy.1959.196.2.451. [DOI] [PubMed] [Google Scholar]
  19. Ma T., Frigeri A., Hasegawa H., Verkman A. S. Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem. 1994 Aug 26;269(34):21845–21849. [PubMed] [Google Scholar]
  20. Maeda Y., Smith B. L., Agre P., Knepper M. A. Quantification of Aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA. J Clin Invest. 1995 Jan;95(1):422–428. doi: 10.1172/JCI117672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marples D., Christensen S., Christensen E. I., Ottosen P. D., Nielsen S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest. 1995 Apr;95(4):1838–1845. doi: 10.1172/JCI117863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marples D., Frøkiaer J., Dørup J., Knepper M. A., Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996 Apr 15;97(8):1960–1968. doi: 10.1172/JCI118628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marples D., Knepper M. A., Christensen E. I., Nielsen S. Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol. 1995 Sep;269(3 Pt 1):C655–C664. doi: 10.1152/ajpcell.1995.269.3.C655. [DOI] [PubMed] [Google Scholar]
  24. Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nielsen S., DiGiovanni S. R., Christensen E. I., Knepper M. A., Harris H. W. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11663–11667. doi: 10.1073/pnas.90.24.11663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nielsen S., Smith B. L., Christensen E. I., Knepper M. A., Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol. 1993 Jan;120(2):371–383. doi: 10.1083/jcb.120.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sands J. M., Naruse M., Jacobs J. D., Wilcox J. N., Klein J. D. Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. J Clin Invest. 1996 Jun 15;97(12):2807–2814. doi: 10.1172/JCI118736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Terris J., Ecelbarger C. A., Marples D., Knepper M. A., Nielsen S. Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol. 1995 Dec;269(6 Pt 2):F775–F785. doi: 10.1152/ajprenal.1995.269.6.F775. [DOI] [PubMed] [Google Scholar]
  29. Terris J., Ecelbarger C. A., Nielsen S., Knepper M. A. Long-term regulation of four renal aquaporins in rats. Am J Physiol. 1996 Aug;271(2 Pt 2):F414–F422. doi: 10.1152/ajprenal.1996.271.2.F414. [DOI] [PubMed] [Google Scholar]
  30. Uchida S., Sasaki S., Fushimi K., Marumo F. Isolation of human aquaporin-CD gene. J Biol Chem. 1994 Sep 23;269(38):23451–23455. [PubMed] [Google Scholar]
  31. Verbalis J. G., Drutarosky M. D. Adaptation to chronic hypoosmolality in rats. Kidney Int. 1988 Sep;34(3):351–360. doi: 10.1038/ki.1988.188. [DOI] [PubMed] [Google Scholar]
  32. Wade J. B., Stetson D. L., Lewis S. A. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–117. doi: 10.1111/j.1749-6632.1981.tb15464.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES