Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 15;99(8):1880–1887. doi: 10.1172/JCI119355

Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2).

P Oelkers 1, L C Kirby 1, J E Heubi 1, P A Dawson 1
PMCID: PMC508012  PMID: 9109432

Abstract

Primary bile acid malabsorption (PBAM) is an idiopathic intestinal disorder associated with congenital diarrhea, steatorrhea, interruption of the enterohepatic circulation of bile acids, and reduced plasma cholesterol levels. The molecular basis of PBAM is unknown, and several conflicting mechanisms have been postulated. In this study, we cloned the human ileal Na+/bile acid cotransporter gene (SLC10A2) and employed single-stranded conformation polymorphism analysis to screen for PBAM-associated mutations. Four polymorphisms were identified and sequenced in a family with congenital PBAM. One allele encoded an A171S missense mutation and a mutated donor splice site for exon 3. The other allele encoded two missense mutations at conserved amino acid positions, L243P and T262M. In transfected COS cells, the L243P, T262M, and double mutant (L243P/T262M) did not affect transporter protein expression or trafficking to the plasma membrane; however, transport of taurocholate and other bile acids was abolished. In contrast, the A171S mutation had no effect on taurocholate uptake. The dysfunctional mutations were not detected in 104 unaffected control subjects, whereas the A171S was present in 28% of that population. These findings establish that SLC10A2 mutations can cause PBAM and underscore the ileal Na+/bile acid cotransporter's role in intestinal reclamation of bile acids.

Full Text

The Full Text of this article is available as a PDF (420.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balistreri W. F., Heubi J. E., Suchy F. J. Bile acid metabolism: relationship of bile acid malabsorption and diarrhea. J Pediatr Gastroenterol Nutr. 1983;2(1):105–121. [PubMed] [Google Scholar]
  2. Balistreri W. F., Suchy F. J., Heubi J. E. Serum bile acid response to a test meal stimulus: a sensitive test of ileal function. J Pediatr. 1980 Mar;96(3 Pt 2):582–589. doi: 10.1016/s0022-3476(80)80870-5. [DOI] [PubMed] [Google Scholar]
  3. Barnes W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beckmann R. P., Mizzen L. E., Welch W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science. 1990 May 18;248(4957):850–854. doi: 10.1126/science.2188360. [DOI] [PubMed] [Google Scholar]
  5. Buchwald H., Varco R. L., Matts J. P., Long J. M., Fitch L. L., Campbell G. S., Pearce M. B., Yellin A. E., Edmiston W. A., Smink R. D., Jr Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH) N Engl J Med. 1990 Oct 4;323(14):946–955. doi: 10.1056/NEJM199010043231404. [DOI] [PubMed] [Google Scholar]
  6. Danzinger R. G., Hofmann A. F., Schoenfield L. J., Thistle J. L. Dissolution of cholesterol gallstones by chenodeoxycholic acid. N Engl J Med. 1972 Jan 6;286(1):1–8. doi: 10.1056/NEJM197201062860101. [DOI] [PubMed] [Google Scholar]
  7. Dawson P. A., Oelkers P. Bile acid transporters. Curr Opin Lipidol. 1995 Apr;6(2):109–114. doi: 10.1097/00041433-199504000-00009. [DOI] [PubMed] [Google Scholar]
  8. Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972 Jun;18(6):499–502. [PubMed] [Google Scholar]
  9. Heubi J. E., Balistreri W. F., Fondacaro J. D., Partin J. C., Schubert W. K. Primary bile acid malabsorption: defective in vitro ileal active bile acid transport. Gastroenterology. 1982 Oct;83(4):804–811. [PubMed] [Google Scholar]
  10. Heubi J. E., Balistreri W. F., Partin J. C., Schubert W. K., McGraw C. A. Refractory infantile diarrhea due to primary bile acid malabsorption. J Pediatr. 1979 Apr;94(4):546–551. doi: 10.1016/s0022-3476(79)80008-6. [DOI] [PubMed] [Google Scholar]
  11. Heubi J. E., O'Connell N. C., Setchell K. D. Ileal resection/dysfunction in childhood predisposes to lithogenic bile only after puberty. Gastroenterology. 1992 Aug;103(2):636–640. doi: 10.1016/0016-5085(92)90858-v. [DOI] [PubMed] [Google Scholar]
  12. Heubi J. E., Soloway R. D., Balistreri W. F. Biliary lipid composition in healthy and diseased infants, children, and young adults. Gastroenterology. 1982 Jun;82(6):1295–1299. [PubMed] [Google Scholar]
  13. Jonas A., Diver-Haber A., Avigad S. Well-compensated primary bile acid malabsorption presenting as chronic nonspecific diarrhea. J Pediatr Gastroenterol Nutr. 1986 Jan;5(1):143–146. doi: 10.1097/00005176-198601000-00027. [DOI] [PubMed] [Google Scholar]
  14. Karpen S. J., Sun A. Q., Kudish B., Hagenbuch B., Meier P. J., Ananthanarayanan M., Suchy F. J. Multiple factors regulate the rat liver basolateral sodium-dependent bile acid cotransporter gene promoter. J Biol Chem. 1996 Jun 21;271(25):15211–15221. doi: 10.1074/jbc.271.25.15211. [DOI] [PubMed] [Google Scholar]
  15. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  16. Martín M. G., Turk E., Lostao M. P., Kerner C., Wright E. M. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet. 1996 Feb;12(2):216–220. doi: 10.1038/ng0296-216. [DOI] [PubMed] [Google Scholar]
  17. Ravnik-Glavac M., Glavac D., Dean M. Sensitivity of single-strand conformation polymorphism and heteroduplex method for mutation detection in the cystic fibrosis gene. Hum Mol Genet. 1994 May;3(5):801–807. doi: 10.1093/hmg/3.5.801. [DOI] [PubMed] [Google Scholar]
  18. Savov A., Angelicheva D., Balassopoulou A., Jordanova A., Noussia-Arvanitakis S., Kalaydjieva L. Double mutant alleles: are they rare? Hum Mol Genet. 1995 Jul;4(7):1169–1171. doi: 10.1093/hmg/4.7.1169. [DOI] [PubMed] [Google Scholar]
  19. Small D. M., Dowling R. H., Redinger R. N. The enterohepatic circulation of bile salts. Arch Intern Med. 1972 Oct;130(4):552–573. [PubMed] [Google Scholar]
  20. Thaysen E. H. Idiopathic bile acid diarrhoea reconsidered. Scand J Gastroenterol. 1985 May;20(4):452–456. doi: 10.3109/00365528509089679. [DOI] [PubMed] [Google Scholar]
  21. Thaysen E. H., Pedersen L. Diarrhoea associated with idiopathic bile acid malabsorption. Fact or fantasy? Dan Med Bull. 1973 Dec;20(6):174–177. [PubMed] [Google Scholar]
  22. Thaysen E. H., Pedersen L. Idiopathic bile acid catharsis. Gut. 1976 Dec;17(12):965–970. doi: 10.1136/gut.17.12.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tserng K. Y., Hachey D. L., Klein P. D. An improved procedure for the synthesis of glycine and taurine conjugates of bile acids. J Lipid Res. 1977 May;18(3):404–407. [PubMed] [Google Scholar]
  24. Turk E., Zabel B., Mundlos S., Dyer J., Wright E. M. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature. 1991 Mar 28;350(6316):354–356. doi: 10.1038/350354a0. [DOI] [PubMed] [Google Scholar]
  25. Wong M. H., Oelkers P., Craddock A. L., Dawson P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem. 1994 Jan 14;269(2):1340–1347. [PubMed] [Google Scholar]
  26. Wong M. H., Oelkers P., Dawson P. A. Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem. 1995 Nov 10;270(45):27228–27234. doi: 10.1074/jbc.270.45.27228. [DOI] [PubMed] [Google Scholar]
  27. Wong M. H., Rao P. N., Pettenati M. J., Dawson P. A. Localization of the ileal sodium-bile acid cotransporter gene (SLC10A2) to human chromosome 13q33. Genomics. 1996 May 1;33(3):538–540. doi: 10.1006/geno.1996.0233. [DOI] [PubMed] [Google Scholar]
  28. van Tilburg A. J., de Rooij F. W., van Blankenstein M., van den Berg J. W., Bosman-Jacobs E. P. Na+-dependent bile acid transport in the ileum: the balance between diarrhea and constipation. Gastroenterology. 1990 Jan;98(1):25–32. doi: 10.1016/0016-5085(90)91286-f. [DOI] [PubMed] [Google Scholar]
  29. van Tilburg A. J., de Rooij F. W., van den Berg J. W., van Blankenstein M. Primary bile acid diarrhoea without an ileal carrier defect: quantification of active bile acid transport across the ileal brush border membrane. Gut. 1991 May;32(5):500–503. doi: 10.1136/gut.32.5.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. van Tilburg A. J., de Rooij F. W., van den Berg J. W., van Blankenstein M. Primary bile acid malabsorption: a pathophysiologic and clinical entity? Scand J Gastroenterol Suppl. 1992;194:66–70. doi: 10.3109/00365529209096030. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES