Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 15;99(8):1897–1905. doi: 10.1172/JCI119357

Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum.

M Ito 1, J L Jameson 1, M Ito 1
PMCID: PMC508014  PMID: 9109434

Abstract

Mutations in the arginine vasopressin (AVP) gene cause autosomal dominant familial neurohypophyseal diabetes insipidus (FNDI). The dominant inheritance pattern has been postulated to reflect neuronal toxicity of the mutant proteins, but the mechanism for such cytotoxicity is unknown. In this study, wild-type or several different mutant AVP genes were stably expressed in neuro2A neuroblastoma cells. When cells were treated with valproic acid to induce neuronal differentiation, each of the mutants caused reduced viability. Metabolic labeling revealed diminished intracellular trafficking of mutant AVP precursors and confirmed inefficient secretion of immunoreactive AVP. Immunofluorescence studies demonstrated marked accumulation of mutant AVP precursors within the endoplasmic reticulum. These studies suggest that the cellular toxicity in FNDI may be caused by the intracellular accumulation of mutant precursor proteins.

Full Text

The Full Text of this article is available as a PDF (388.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold A., Horst S. A., Gardella T. J., Baba H., Levine M. A., Kronenberg H. M. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest. 1990 Oct;86(4):1084–1087. doi: 10.1172/JCI114811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRAVERMAN L. E., MANCINI J. P., MCGOLDRICK D. M. HEREDITARY IDIOPATHIC DIABETES INSIPIDUS. A CASE REPORT WITH AUTOPSY FINDINGS. Ann Intern Med. 1965 Sep;63:503–508. doi: 10.7326/0003-4819-63-3-503. [DOI] [PubMed] [Google Scholar]
  3. Bahnsen U., Oosting P., Swaab D. F., Nahke P., Richter D., Schmale H. A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J. 1992 Jan;11(1):19–23. doi: 10.1002/j.1460-2075.1992.tb05022.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylis P. H., Robertson G. L. Vasopressin function in familial cranial diabetes insipidus. Postgrad Med J. 1981 Jan;57(663):36–40. doi: 10.1136/pgmj.57.663.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergeron C., Kovacs K., Ezrin C., Mizzen C. Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol. 1991;81(3):345–348. doi: 10.1007/BF00305879. [DOI] [PubMed] [Google Scholar]
  6. Brownstein M. J., Russell J. T., Gainer H. Synthesis, transport, and release of posterior pituitary hormones. Science. 1980 Jan 25;207(4429):373–378. doi: 10.1126/science.6153132. [DOI] [PubMed] [Google Scholar]
  7. Burman S., Wellner D., Chait B., Chaudhary T., Breslow E. Complete assignment of neurophysin disulfides indicates pairing in two separate domains. Proc Natl Acad Sci U S A. 1989 Jan;86(2):429–433. doi: 10.1073/pnas.86.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bursch W., Paffe S., Putz B., Barthel G., Schulte-Hermann R. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis. 1990 May;11(5):847–853. doi: 10.1093/carcin/11.5.847. [DOI] [PubMed] [Google Scholar]
  9. Carlson J. A., Rogers B. B., Sifers R. N., Finegold M. J., Clift S. M., DeMayo F. J., Bullock D. W., Woo S. L. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest. 1989 Apr;83(4):1183–1190. doi: 10.1172/JCI113999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen L. Q., Rose J. P., Breslow E., Yang D., Chang W. R., Furey W. F., Jr, Sax M., Wang B. C. Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4240–4244. doi: 10.1073/pnas.88.10.4240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chevrier D., Fournier H., Nault C., Zollinger M., Crine P., Boileau G. Expression of porcine pro-opiomelanocortin in mouse neuroblastoma (Neuro2A) cells: targeting of the foreign neuropeptide to dense-core vesicles. Mol Cell Endocrinol. 1991 Aug;79(1-3):109–118. doi: 10.1016/0303-7207(91)90101-w. [DOI] [PubMed] [Google Scholar]
  12. Cogan J. D., Ramel B., Lehto M., Phillips J., 3rd, Prince M., Blizzard R. M., de Ravel T. J., Brammert M., Groop L. A recurring dominant negative mutation causes autosomal dominant growth hormone deficiency--a clinical research center study. J Clin Endocrinol Metab. 1995 Dec;80(12):3591–3595. doi: 10.1210/jcem.80.12.8530604. [DOI] [PubMed] [Google Scholar]
  13. Fassina G., Chaiken I. M. Structural requirements of peptide hormone binding for peptide-potentiated self-association of bovine neurophysin II. J Biol Chem. 1988 Sep 25;263(27):13539–13543. [PubMed] [Google Scholar]
  14. Ganrot P. O., Laurell C. B., Eriksson S. Obstructive lung disease and trypsin inhibitors in alpha-1-antitrypsin deficiency. Scand J Clin Lab Invest. 1967;19(3):205–208. doi: 10.3109/00365516709090627. [DOI] [PubMed] [Google Scholar]
  15. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  16. Ito M., Mori Y., Oiso Y., Saito H. A single base substitution in the coding region for neurophysin II associated with familial central diabetes insipidus. J Clin Invest. 1991 Feb;87(2):725–728. doi: 10.1172/JCI115052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ito M., Oiso Y., Murase T., Kondo K., Saito H., Chinzei T., Racchi M., Lively M. O. Possible involvement of inefficient cleavage of preprovasopressin by signal peptidase as a cause for familial central diabetes insipidus. J Clin Invest. 1993 Jun;91(6):2565–2571. doi: 10.1172/JCI116494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iversen L. L., Mortishire-Smith R. J., Pollack S. J., Shearman M. S. The toxicity in vitro of beta-amyloid protein. Biochem J. 1995 Oct 1;311(Pt 1):1–16. doi: 10.1042/bj3110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaplowitz P. B., D'Ercole A. J., Robertson G. L. Radioimmunoassay of vasopressin in familial cental diabetes insipidus. J Pediatr. 1982 Jan;100(1):76–81. doi: 10.1016/s0022-3476(82)80238-2. [DOI] [PubMed] [Google Scholar]
  20. Krishnamani M. R., Phillips J. A., 3rd, Copeland K. C. Detection of a novel arginine vasopressin defect by dideoxy fingerprinting. J Clin Endocrinol Metab. 1993 Sep;77(3):596–598. doi: 10.1210/jcem.77.3.8370681. [DOI] [PubMed] [Google Scholar]
  21. LaFerla F. M., Tinkle B. T., Bieberich C. J., Haudenschild C. C., Jay G. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet. 1995 Jan;9(1):21–30. doi: 10.1038/ng0195-21. [DOI] [PubMed] [Google Scholar]
  22. Le A., Graham K. S., Sifers R. N. Intracellular degradation of the transport-impaired human PiZ alpha 1-antitrypsin variant. Biochemical mapping of the degradative event among compartments of the secretory pathway. J Biol Chem. 1990 Aug 15;265(23):14001–14007. [PubMed] [Google Scholar]
  23. Lomas D. A., Evans D. L., Finch J. T., Carrell R. W. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992 Jun 18;357(6379):605–607. doi: 10.1038/357605a0. [DOI] [PubMed] [Google Scholar]
  24. Martin M. L., Regan C. M. The anticonvulsant valproate teratogen restricts the glial cell cycle at a defined point in the mid-G1 phase. Brain Res. 1991 Jul 19;554(1-2):223–228. doi: 10.1016/0006-8993(91)90193-y. [DOI] [PubMed] [Google Scholar]
  25. McLeod J. F., Kovács L., Gaskill M. B., Rittig S., Bradley G. S., Robertson G. L. Familial neurohypophyseal diabetes insipidus associated with a signal peptide mutation. J Clin Endocrinol Metab. 1993 Sep;77(3):599A–599G. doi: 10.1210/jcem.77.3.8370682. [DOI] [PubMed] [Google Scholar]
  26. Mellman I., Simons K. The Golgi complex: in vitro veritas? Cell. 1992 Mar 6;68(5):829–840. doi: 10.1016/0092-8674(92)90027-A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagai I., Li C. H., Hsieh S. M., Kizaki T., Urano Y. Two cases of hereditary diabetes insipidus, with an autopsy finding in one. Acta Endocrinol (Copenh) 1984 Mar;105(3):318–323. doi: 10.1530/acta.0.1050318. [DOI] [PubMed] [Google Scholar]
  28. Nagasaki H., Ito M., Yuasa H., Saito H., Fukase M., Hamada K., Ishikawa E., Katakami H., Oiso Y. Two novel mutations in the coding region for neurophysin-II associated with familial central diabetes insipidus. J Clin Endocrinol Metab. 1995 Apr;80(4):1352–1356. doi: 10.1210/jcem.80.4.7714110. [DOI] [PubMed] [Google Scholar]
  29. Noël G., Zollinger L., Laliberté F., Rassart E., Crine P., Boileau G. Targeting and processing of pro-opiomelanocortin in neuronal cell lines. J Neurochem. 1989 Apr;52(4):1050–1057. doi: 10.1111/j.1471-4159.1989.tb01846.x. [DOI] [PubMed] [Google Scholar]
  30. Regan C. M. Therapeutic levels of sodium valproate inhibit mitotic indices in cells of neural origin. Brain Res. 1985 Nov 18;347(2):394–398. doi: 10.1016/0006-8993(85)90207-0. [DOI] [PubMed] [Google Scholar]
  31. Repaske D. R., Browning J. E. A de novo mutation in the coding sequence for neurophysin-II (Pro24-->Leu) is associated with onset and transmission of autosomal dominant neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab. 1994 Aug;79(2):421–427. doi: 10.1210/jcem.79.2.8045958. [DOI] [PubMed] [Google Scholar]
  32. Rholam M., Nicolas P., Cohen P. Binding of neurohypophyseal peptides to neurophysin dimer promotes formation of compact and spherical complexes. Biochemistry. 1982 Sep 28;21(20):4968–4973. doi: 10.1021/bi00263a021. [DOI] [PubMed] [Google Scholar]
  33. Riddell D. C., Mallonee R., Phillips J. A., Parks J. S., Sexton L. A., Hamerton J. L. Chromosomal assignment of human sequences encoding arginine vasopressin-neurophysin II and growth hormone releasing factor. Somat Cell Mol Genet. 1985 Mar;11(2):189–195. doi: 10.1007/BF01534707. [DOI] [PubMed] [Google Scholar]
  34. Rittig S., Robertson G. L., Siggaard C., Kovács L., Gregersen N., Nyborg J., Pedersen E. B. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet. 1996 Jan;58(1):107–117. [PMC free article] [PubMed] [Google Scholar]
  35. Ross J., Olmsted J. B., Rosenbaum J. L. The ultrastructure of mouse neuroblastoma cells in tissue culture. Tissue Cell. 1975;7(1):107–135. doi: 10.1016/s0040-8166(75)80010-3. [DOI] [PubMed] [Google Scholar]
  36. Rothman J. E., Orci L. Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. FASEB J. 1990 Mar;4(5):1460–1468. doi: 10.1096/fasebj.4.5.2407590. [DOI] [PubMed] [Google Scholar]
  37. Rutishauser J., Böni-Schnetzler M., Böni J., Wichmann W., Huisman T., Vallotton M. B., Froesch E. R. A novel point mutation in the translation initiation codon of the pre-pro-vasopressin-neurophysin II gene: cosegregation with morphological abnormalities and clinical symptoms in autosomal dominant neurohypophyseal diabetes insipidus. J Clin Endocrinol Metab. 1996 Jan;81(1):192–198. doi: 10.1210/jcem.81.1.8550751. [DOI] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sausville E., Carney D., Battey J. The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem. 1985 Aug 25;260(18):10236–10241. [PubMed] [Google Scholar]
  40. Ueta Y., Taniguchi S., Yoshida A., Murakami I., Mitani Y., Hisatome I., Manabe I., Sato R., Tsuboi M., Ohtahara A. A new type of familial central diabetes insipidus caused by a single base substitution in the neurophysin II coding region of the vasopressin gene. J Clin Endocrinol Metab. 1996 May;81(5):1787–1790. doi: 10.1210/jcem.81.5.8626836. [DOI] [PubMed] [Google Scholar]
  41. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  42. Yuasa H., Ito M., Nagasaki H., Oiso Y., Miyamoto S., Sasaki N., Saito H. Glu-47, which forms a salt bridge between neurophysin-II and arginine vasopressin, is deleted in patients with familial central diabetes insipidus. J Clin Endocrinol Metab. 1993 Sep;77(3):600–604. doi: 10.1210/jcem.77.3.8103767. [DOI] [PubMed] [Google Scholar]
  43. de Bree F. M., Burbach J. P. Heterologous biosynthesis and processing of preprovasopressin in Neuro2A neuroblastoma cells. Biochimie. 1994;76(3-4):315–319. doi: 10.1016/0300-9084(94)90165-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES