Abstract
Missense mutations have been identified in the coding region of the extracellular calcium-sensing receptor (CASR) gene and cause human autosomal dominant hypo- and hypercalcemic disorders. The functional effects of several of these mutations have been characterized in either Xenopus laevis oocytes or in human embryonic kidney (HEK293) cells. All of the mutations that have been examined to date, however, cause single putative amino acid substitutions. In this report, we studied a mutant CASR with an Alu-repetitive element inserted at codon 876, which was identified in affected members of families with the hypercalcemic disorders, familial hypocalciuric hypercalcemia (FHH) and neonatal severe hyperparathyroidism (NSHPT), to understand how this insertion affects CASR function. After cloning of the Alu-repetitive element into the wild-type CASR cDNA, we transiently expressed the mutant receptor in HEK293 cells. Expression of mutant and wild-type receptors was assessed by Western analysis, and the effects of the mutation on extracellular calcium (Ca2+(o)) and gadolinium (Gd3+(o)) elicited increases in the cytosolic calcium concentration (Ca2+(i)) were examined in fura-2-loaded cells using dual wavelength fluorimetry. The insertion resulted in truncated receptor species that had molecular masses some 30 kD less than that of the wild-type CASR and exhibited no Ca2+(i) responses to either Ca2+(o) or Gd3+(o). A similar result was observed with a mutated CASR truncated at residue 876. However, the Alu mutant receptor had no impact on the function of the coexpressed wild-type receptor. Interestingly, the Alu mutant receptor demonstrated decreased cell surface expression relative to the wild-type receptor, whereas the CASR (A877stop) mutant exhibited increased cell surface expression. Thus, like the missense mutations that have been characterized to date in families with FHH, the Alu insertion in this family is a loss-of-function mutation that produces hypercalcemia by reducing the number of normally functional CASRs on the surface of parathyroid and kidney cells. In vitro transcription of exon 7 of the CASR containing the Alu sequence yielded the full-length mutant product and an additional shorter product that was truncated due to stalling of the polymerase at the poly(T) tract. In vitro translation of the mutant transcript yielded three truncated protein products representing termination in all three reading frames at stop codons within the Alu insertion. Thus sequences within the Alu contribute to slippage or frameshift mutagenesis during transcription and/or translation.
Full Text
The Full Text of this article is available as a PDF (600.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bai M., Quinn S., Trivedi S., Kifor O., Pearce S. H., Pollak M. R., Krapcho K., Hebert S. C., Brown E. M. Expression and characterization of inactivating and activating mutations in the human Ca2+o-sensing receptor. J Biol Chem. 1996 Aug 9;271(32):19537–19545. doi: 10.1074/jbc.271.32.19537. [DOI] [PubMed] [Google Scholar]
- Brown E. M. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991 Apr;71(2):371–411. doi: 10.1152/physrev.1991.71.2.371. [DOI] [PubMed] [Google Scholar]
- Brown E. M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., Sun A., Hediger M. A., Lytton J., Hebert S. C. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993 Dec 9;366(6455):575–580. doi: 10.1038/366575a0. [DOI] [PubMed] [Google Scholar]
- Brownell E., Mittereder N., Rice N. R. A human rel proto-oncogene cDNA containing an Alu fragment as a potential coding exon. Oncogene. 1989 Jul;4(7):935–942. [PubMed] [Google Scholar]
- Chattopadhyay N., Mithal A., Brown E. M. The calcium-sensing receptor: a window into the physiology and pathophysiology of mineral ion metabolism. Endocr Rev. 1996 Aug;17(4):289–307. doi: 10.1210/edrv-17-4-289. [DOI] [PubMed] [Google Scholar]
- Chou Y. H., Pollak M. R., Brandi M. L., Toss G., Arnqvist H., Atkinson A. B., Papapoulos S. E., Marx S., Brown E. M., Seidman J. G. Mutations in the human Ca(2+)-sensing-receptor gene that cause familial hypocalciuric hypercalcemia. Am J Hum Genet. 1995 May;56(5):1075–1079. [PMC free article] [PubMed] [Google Scholar]
- Cole D. e., Forsythe C. R., Dooley J. M., Grantmyre E. B., Salisbury S. R. Primary neonatal hyperparathyroidism: a devastating neurodevelopmental disorder if left untreated. J Craniofac Genet Dev Biol. 1990;10(2):205–214. [PubMed] [Google Scholar]
- Dohlman H. G., Thorner J., Caron M. G., Lefkowitz R. J. Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem. 1991;60:653–688. doi: 10.1146/annurev.bi.60.070191.003253. [DOI] [PubMed] [Google Scholar]
- Duksin D., Seiberg M., Mahoney W. C. Inhibition of protein glycosylation and selective cytotoxicity toward virally transformed fibroblasts caused by B3-tunicamycin. Eur J Biochem. 1982 Dec;129(1):77–80. doi: 10.1111/j.1432-1033.1982.tb07022.x. [DOI] [PubMed] [Google Scholar]
- Economou E. P., Bergen A. W., Warren A. C., Antonarakis S. E. The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2951–2954. doi: 10.1073/pnas.87.8.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein N., Nahor O., Silver J. The 3' ends of alu repeats are highly polymorphic. Nucleic Acids Res. 1990 Aug 11;18(15):4634–4634. doi: 10.1093/nar/18.15.4634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fajtova V. T., Quinn S. J., Brown E. M. Cytosolic calcium responses of single rMTC 44-2 cells to stimulation with external calcium and potassium. Am J Physiol. 1991 Jul;261(1 Pt 1):E151–E158. doi: 10.1152/ajpendo.1991.261.1.E151. [DOI] [PubMed] [Google Scholar]
- Foley T. P., Jr, Harrison H. C., Arnaud C. D., Harrison H. E. Familial benign hypercalcemia. J Pediatr. 1972 Dec;81(6):1060–1067. doi: 10.1016/s0022-3476(72)80232-4. [DOI] [PubMed] [Google Scholar]
- Garrett J. E., Capuano I. V., Hammerland L. G., Hung B. C., Brown E. M., Hebert S. C., Nemeth E. F., Fuller F. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem. 1995 May 26;270(21):12919–12925. doi: 10.1074/jbc.270.21.12919. [DOI] [PubMed] [Google Scholar]
- Goldbloom R. B., Gillis D. A., Prasad M. Hereditary parathyroid hyperplasia: a surgical emergency of early infancy. Pediatrics. 1972 Apr;49(4):514–523. [PubMed] [Google Scholar]
- Heath H., 3rd, Odelberg S., Jackson C. E., Teh B. T., Hayward N., Larsson C., Buist N. R., Krapcho K. J., Hung B. C., Capuano I. V. Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercalcemia suggest receptor functional domains. J Clin Endocrinol Metab. 1996 Apr;81(4):1312–1317. doi: 10.1210/jcem.81.4.8636323. [DOI] [PubMed] [Google Scholar]
- Ho C., Conner D. A., Pollak M. R., Ladd D. J., Kifor O., Warren H. B., Brown E. M., Seidman J. G., Seidman C. E. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet. 1995 Dec;11(4):389–394. doi: 10.1038/ng1295-389. [DOI] [PubMed] [Google Scholar]
- Hope I. A., Struhl K. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell. 1985 Nov;43(1):177–188. doi: 10.1016/0092-8674(85)90022-4. [DOI] [PubMed] [Google Scholar]
- Janicic N., Pausova Z., Cole D. E., Hendy G. N. Insertion of an Alu sequence in the Ca(2+)-sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am J Hum Genet. 1995 Apr;56(4):880–886. [PMC free article] [PubMed] [Google Scholar]
- Janicic N., Soliman E., Pausova Z., Seldin M. F., Rivière M., Szpirer J., Szpirer C., Hendy G. N. Mapping of the calcium-sensing receptor gene (CASR) to human chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat chromosome 11 and mouse chromosome 16. Mamm Genome. 1995 Nov;6(11):798–801. doi: 10.1007/BF00539007. [DOI] [PubMed] [Google Scholar]
- Kerppola T. K., Kane C. M. Analysis of the signals for transcription termination by purified RNA polymerase II. Biochemistry. 1990 Jan 9;29(1):269–278. doi: 10.1021/bi00453a037. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A. Frameshift mutagenesis by eucaryotic DNA polymerases in vitro. J Biol Chem. 1986 Oct 15;261(29):13581–13587. [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Law W. M., Jr, Heath H., 3rd Familial benign hypercalcemia (hypocalciuric hypercalcemia). Clinical and pathogenetic studies in 21 families. Ann Intern Med. 1985 Apr;102(4):511–519. doi: 10.7326/0003-4819-102-4-511. [DOI] [PubMed] [Google Scholar]
- Macdonald L. E., Zhou Y., McAllister W. T. Termination and slippage by bacteriophage T7 RNA polymerase. J Mol Biol. 1993 Aug 20;232(4):1030–1047. doi: 10.1006/jmbi.1993.1458. [DOI] [PubMed] [Google Scholar]
- Makałowski W., Mitchell G. A., Labuda D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 1994 Jun;10(6):188–193. doi: 10.1016/0168-9525(94)90254-2. [DOI] [PubMed] [Google Scholar]
- Marx S. J., Attie M. F., Levine M. A., Spiegel A. M., Downs R. W., Jr, Lasker R. D. The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine (Baltimore) 1981 Nov;60(6):397–412. doi: 10.1097/00005792-198111000-00002. [DOI] [PubMed] [Google Scholar]
- Marx S. J., Attie M. F., Spiegel A. M., Levine M. A., Lasker R. D., Fox M. An association between neonatal severe primary hyperparathyroidism and familial hypocalciuric hypercalcemia in three kindreds. N Engl J Med. 1982 Feb 4;306(5):257–264. doi: 10.1056/NEJM198202043060502. [DOI] [PubMed] [Google Scholar]
- Marx S. J., Fraser D., Rapoport A. Familial hypocalciuric hypercalcemia. Mild expression of the gene in heterozygotes and severe expression in homozygotes. Am J Med. 1985 Jan;78(1):15–22. doi: 10.1016/0002-9343(85)90455-3. [DOI] [PubMed] [Google Scholar]
- Marx S. J., Lasker R. D., Brown E. M., Fitzpatrick L. A., Sweezey N. B., Goldbloom R. B., Gillis D. A., Cole D. E. Secretory dysfunction in parathyroid cells from a neonate with severe primary hyperparathyroidism. J Clin Endocrinol Metab. 1986 Feb;62(2):445–449. doi: 10.1210/jcem-62-2-445. [DOI] [PubMed] [Google Scholar]
- Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce S. H., Bai M., Quinn S. J., Kifor O., Brown E. M., Thakker R. V. Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells. J Clin Invest. 1996 Oct 15;98(8):1860–1866. doi: 10.1172/JCI118987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce S. H., Trump D., Wooding C., Besser G. M., Chew S. L., Grant D. B., Heath D. A., Hughes I. A., Paterson C. R., Whyte M. P. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest. 1995 Dec;96(6):2683–2692. doi: 10.1172/JCI118335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollak M. R., Brown E. M., Chou Y. H., Hebert S. C., Marx S. J., Steinmann B., Levi T., Seidman C. E., Seidman J. G. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993 Dec 31;75(7):1297–1303. doi: 10.1016/0092-8674(93)90617-y. [DOI] [PubMed] [Google Scholar]
- Pollak M. R., Chou Y. H., Marx S. J., Steinmann B., Cole D. E., Brandi M. L., Papapoulos S. E., Menko F. H., Hendy G. N., Brown E. M. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J Clin Invest. 1994 Mar;93(3):1108–1112. doi: 10.1172/JCI117062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Resnekov O., Aloni Y. RNA polymerase II is capable of pausing and prematurely terminating transcription at a precise location in vivo and in vitro. Proc Natl Acad Sci U S A. 1989 Jan;86(1):12–16. doi: 10.1073/pnas.86.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmann B., Gnehm H. E., Rao V. H., Kind H. P., Prader A. Neonatal severe primary hyperparathyroidism and alkaptonuria in a boy born to related parents with familial hypocalciuric hypercalcemia. Helv Paediatr Acta. 1984 May;39(2):171–186. [PubMed] [Google Scholar]
- Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
- Zuliani G., Hobbs H. H. A high frequency of length polymorphisms in repeated sequences adjacent to Alu sequences. Am J Hum Genet. 1990 May;46(5):963–969. [PMC free article] [PubMed] [Google Scholar]