Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Apr 15;99(8):2020–2029. doi: 10.1172/JCI119370

Very low density lipoproteins stimulate surfactant lipid synthesis in vitro.

R K Mallampalli 1, R G Salome 1, S L Bowen 1, D A Chappell 1
PMCID: PMC508027  PMID: 9109447

Abstract

Surfactant synthesis is critically dependent on the availability of fatty acids. One fatty acid source may be circulating triglycerides that are transported in VLDL, and hydrolyzed to free fatty acids by lipoprotein lipase (LPL). To evaluate this hypothesis, we incubated immortalized or primary rat alveolar pre-type II epithelial cells with VLDL. The cells were observed to surface bind, internalize, and degrade VLDL, a process that was induced by exogenous LPL. LPL induction of lipoprotein uptake significantly increased the rates of choline incorporation into phosphatidylcholine (PC) and disaturated PC, and these effects were associated with a three-fold increase in the activity of the rate-regulatory enzyme for PC synthesis, cytidylyltransferase. Compared with native LPL, a fusion protein of glutathione S-transferase with the catalytically inactive carboxy-terminal domain of LPL did not activate CT despite inducing VLDL uptake. A variant of the fusion protein of glutathione S-transferase with the catalytically inactive carboxy-terminal domain of LPL that partially blocked LPL-induced catabolism of VLDL via LDL receptors also partially blocked the induction of surfactant synthesis by VLDL. Taken together, these observations suggest that both the lipolytic actions of LPL and LPL-induced VLDL catabolism via lipoprotein receptors might play an integral role in providing the fatty acid substrates used in surfactant phospholipid synthesis.

Full Text

The Full Text of this article is available as a PDF (257.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Batenburg J. J. Surfactant phospholipids: synthesis and storage. Am J Physiol. 1992 Apr;262(4 Pt 1):L367–L385. doi: 10.1152/ajplung.1992.262.4.L367. [DOI] [PubMed] [Google Scholar]
  3. Blanchette-Mackie E. J., Wetzel M. G., Chernick S. S., Paterniti J. R., Jr, Brown W. V., Scow R. O. Effect of the combined lipase deficiency mutation (cld/cld) on ultrastructure of tissues in mice. Diaphragm, heart, brown adipose tissue, lung, and liver. Lab Invest. 1986 Sep;55(3):347–362. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chappell D. A., Fry G. L., Waknitz M. A., Muhonen L. E., Pladet M. W., Iverius P. H., Strickland D. K. Lipoprotein lipase induces catabolism of normal triglyceride-rich lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor in vitro. A process facilitated by cell-surface proteoglycans. J Biol Chem. 1993 Jul 5;268(19):14168–14175. [PubMed] [Google Scholar]
  6. Chappell D. A., Fry G. L., Waknitz M. A., Muhonen L. E., Pladet M. W. Low density lipoprotein receptors bind and mediate cellular catabolism of normal very low density lipoproteins in vitro. J Biol Chem. 1993 Dec 5;268(34):25487–25493. [PubMed] [Google Scholar]
  7. Chappell D. A., Inoue I., Fry G. L., Pladet M. W., Bowen S. L., Iverius P. H., Lalouel J. M., Strickland D. K. Cellular catabolism of normal very low density lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is induced by the C-terminal domain of lipoprotein lipase. J Biol Chem. 1994 Jul 8;269(27):18001–18006. [PubMed] [Google Scholar]
  8. Chatelet F., Brianti E., Ronco P., Roland J., Verroust P. Ultrastructural localization by monoclonal antibodies of brush border antigens expressed by glomeruli. II. Extrarenal distribution. Am J Pathol. 1986 Mar;122(3):512–519. [PMC free article] [PubMed] [Google Scholar]
  9. Child G. V., Thurlbeck W. M., Weigensberg B. I. Severe pulmonary atherosclerosis in hypercholesterolemic rabbits. Arch Pathol. 1974 Jul;98(1):47–50. [PubMed] [Google Scholar]
  10. Chung B. H., Tallis G., Yalamoori V., Anantharamaiah G. M., Segrest J. P. Liposome-like particles isolated from human atherosclerotic plaques are structurally and compositionally similar to surface remnants of triglyceride-rich lipoproteins. Arterioscler Thromb. 1994 Apr;14(4):622–635. doi: 10.1161/01.atv.14.4.622. [DOI] [PubMed] [Google Scholar]
  11. Compton S. K., Hamosh M., Hamosh P. Hydrolysis of neutral lipids and phospholipids in the isolated, perfused rat lung. Biochim Biophys Acta. 1984 Aug 15;795(1):30–36. doi: 10.1016/0005-2760(84)90101-2. [DOI] [PubMed] [Google Scholar]
  12. Compton S. K., Hamosh M., Hamosh P. Hydrolysis of triglycerides in the isolated perfused rat lung. Lipids. 1982 Oct;17(10):696–702. doi: 10.1007/BF02534654. [DOI] [PubMed] [Google Scholar]
  13. Coonrod J. D., Karathanasis P., Lin R. Lipoprotein lipase: a source of free fatty acids in bronchoalveolar lining fluid. J Lab Clin Med. 1989 Apr;113(4):449–457. [PubMed] [Google Scholar]
  14. Feldman D. A., Kovac C. R., Dranginis P. L., Weinhold P. A. The role of phosphatidylglycerol in the activation of CTP:phosphocholine cytidylyltransferase from rat lung. J Biol Chem. 1978 Jul 25;253(14):4980–4986. [PubMed] [Google Scholar]
  15. Gal S., Bassett D. J., Hamosh M., Hamosh P. Triacylglycerol hyrolysis in the isolated, perfused rat lung. Biochim Biophys Acta. 1982 Nov 12;713(2):222–229. doi: 10.1016/0005-2760(82)90239-9. [DOI] [PubMed] [Google Scholar]
  16. Hamosh M., Simon M. R., Canter H., Jr, Hamosh P. Lipoprotein lipase activity and blood triglyceride levels in fetal and newborn rats. Pediatr Res. 1978 Dec;12(12):1132–1136. doi: 10.1203/00006450-197812000-00006. [DOI] [PubMed] [Google Scholar]
  17. Hass M. A., Longmore W. J. Regulation of lung surfactant cholesterol metabolism by serum lipopoteins. Lipids. 1980 Jun;15(6):401–406. doi: 10.1007/BF02534063. [DOI] [PubMed] [Google Scholar]
  18. Hass M. A., Longmore W. J. Surfactant cholesterol metabolism of the isolated perfused rat lung. Biochim Biophys Acta. 1979 Apr 27;573(1):166–174. doi: 10.1016/0005-2760(79)90183-8. [DOI] [PubMed] [Google Scholar]
  19. Hennig B., Shasby D. M., Spector A. A. Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers. Circ Res. 1985 Nov;57(5):776–780. doi: 10.1161/01.res.57.5.776. [DOI] [PubMed] [Google Scholar]
  20. Innerarity T. L., Pitas R. E., Mahley R. W. Disparities in the interaction of rat and human lipoproteins with cultured rat fibroblasts and smooth muscle cells. Requirements for homology for receptor binding activity. J Biol Chem. 1980 Dec 10;255(23):11163–11172. [PubMed] [Google Scholar]
  21. Iverius P. H., Ostlund-Lindqvist A. M. Lipoprotein lipase from bovine milk. Isolation procedure, chemical characterization, and molecular weight analysis. J Biol Chem. 1976 Dec 25;251(24):7791–7795. [PubMed] [Google Scholar]
  22. Jamil H., Utal A. K., Vance D. E. Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. J Biol Chem. 1992 Jan 25;267(3):1752–1760. [PubMed] [Google Scholar]
  23. Kounnas M. Z., Chappell D. A., Strickland D. K., Argraves W. S. Glycoprotein 330, a member of the low density lipoprotein receptor family, binds lipoprotein lipase in vitro. J Biol Chem. 1993 Jul 5;268(19):14176–14181. [PubMed] [Google Scholar]
  24. Kounnas M. Z., Chappell D. A., Wong H., Argraves W. S., Strickland D. K. The cellular internalization and degradation of hepatic lipase is mediated by low density lipoprotein receptor-related protein and requires cell surface proteoglycans. J Biol Chem. 1995 Apr 21;270(16):9307–9312. doi: 10.1074/jbc.270.16.9307. [DOI] [PubMed] [Google Scholar]
  25. Kurashima K., Ogawa H., Ohka T., Fujimura M., Matsuda T., Kobayashi T. A pilot study of surfactant inhalation in the treatment of asthmatic attack. Arerugi. 1991 Feb;40(2):160–163. [PubMed] [Google Scholar]
  26. Lusuardi M., Capelli A., Carli S., Tacconi M. T., Salmona M., Donner C. F. Role of surfactant in chronic obstructive pulmonary disease: therapeutic implications. Respiration. 1992;59 (Suppl 1):28–32. doi: 10.1159/000196100. [DOI] [PubMed] [Google Scholar]
  27. Mahoney E. M., Khoo J. C., Steinberg D. Lipoprotein lipase secretion by human monocytes and rabbit alveolar macrophages in culture. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1639–1642. doi: 10.1073/pnas.79.5.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maksvytis H. J., Niles R. M., Simanovsky L., Minassian I. A., Richardson L. L., Hamosh M., Hamosh P., Brody J. S. In vitro characteristics of the lipid-filled interstitial cell associated with postnatal lung growth: evidence for fibroblast heterogeneity. J Cell Physiol. 1984 Feb;118(2):113–123. doi: 10.1002/jcp.1041180203. [DOI] [PubMed] [Google Scholar]
  29. Mallampalli R. K., Floerchinger C. S., Hunninghake G. W. Isolation and immortalization of rat pre-type II cell lines. In Vitro Cell Dev Biol. 1992 Mar;28A(3 Pt 1):181–187. doi: 10.1007/BF02631089. [DOI] [PubMed] [Google Scholar]
  30. Mallampalli R. K., Salome R. G., Li C. H., VanRollins M., Hunninghake G. W. Betamethasone activation of CTP:cholinephosphate cytidylyltransferase is mediated by fatty acids. J Cell Physiol. 1995 Mar;162(3):410–421. doi: 10.1002/jcp.1041620313. [DOI] [PubMed] [Google Scholar]
  31. Mallampalli R. K., Salome R. G., Spector A. A. Regulation of CTP:choline-phosphate cytidylyltransferase by polyunsaturated n-3 fatty acids. Am J Physiol. 1994 Dec;267(6 Pt 1):L641–L648. doi: 10.1152/ajplung.1994.267.6.L641. [DOI] [PubMed] [Google Scholar]
  32. Mallampalli R. K., Walter M. E., Peterson M. W., Hunninghake G. W. Betamethasone activation of CTP:cholinephosphate cytidylyltransferase in vivo is lipid dependent. Am J Respir Cell Mol Biol. 1994 Jan;10(1):48–57. doi: 10.1165/ajrcmb.10.1.8292380. [DOI] [PubMed] [Google Scholar]
  33. Mason R. J., Dobbs L. G. Synthesis of phosphatidylcholine and phosphatidylglycerol by alveolar type II cells in primary culture. J Biol Chem. 1980 Jun 10;255(11):5101–5107. [PubMed] [Google Scholar]
  34. Medh J. D., Bowen S. L., Fry G. L., Ruben S., Andracki M., Inoue I., Lalouel J. M., Strickland D. K., Chappell D. A. Lipoprotein lipase binds to low density lipoprotein receptors and induces receptor-mediated catabolism of very low density lipoproteins in vitro. J Biol Chem. 1996 Jul 19;271(29):17073–17080. doi: 10.1074/jbc.271.29.17073. [DOI] [PubMed] [Google Scholar]
  35. Okabe T., Yorifuji H., Murase T., Takaku F. Pulmonary macrophage: a major source of lipoprotein lipase in the lung. Biochem Biophys Res Commun. 1984 Nov 30;125(1):273–278. doi: 10.1016/s0006-291x(84)80364-2. [DOI] [PubMed] [Google Scholar]
  36. Patterson C. E., Davis K. S., Rhoades R. A. Regulation of fetal lung disaturated phosphatidylcholine synthesis by de novo palmitate supply. Biochim Biophys Acta. 1988 Jan 19;958(1):60–69. doi: 10.1016/0005-2760(88)90246-9. [DOI] [PubMed] [Google Scholar]
  37. Pelech S. L., Pritchard P. H., Brindley D. N., Vance D. E. Fatty acids promote translocation of CTP:phosphocholine cytidylyltransferase to the endoplasmic reticulum and stimulate rat hepatic phosphatidylcholine synthesis. J Biol Chem. 1983 Jun 10;258(11):6782–6788. [PubMed] [Google Scholar]
  38. Pietra G. G., Spagnoli L. G., Capuzzi D. M., Sparks C. E., Fishman A. P., Marsh J. B. Metabolism of 125I-labeled lipoproteins by the isolated rat lung. J Cell Biol. 1976 Jul;70(1):33–46. doi: 10.1083/jcb.70.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Post M., Batenburg J. J., Smith B. T., Van Golde L. M. Pool sizes of precursors for phosphatidylcholine formation in adult rat lung type II cells. Biochim Biophys Acta. 1984 Oct 4;795(3):552–557. doi: 10.1016/0005-2760(84)90185-1. [DOI] [PubMed] [Google Scholar]
  40. Post M., Smith B. T. Histochemical and immunocytochemical identification of alveolar type II epithelial cells isolated from fetal rat lung. Am Rev Respir Dis. 1988 Mar;137(3):525–530. doi: 10.1164/ajrccm/137.3.525. [DOI] [PubMed] [Google Scholar]
  41. Rapp J. H., Lespine A., Hamilton R. L., Colyvas N., Chaumeton A. H., Tweedie-Hardman J., Kotite L., Kunitake S. T., Havel R. J., Kane J. P. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994 Nov;14(11):1767–1774. doi: 10.1161/01.atv.14.11.1767. [DOI] [PubMed] [Google Scholar]
  42. Robinson P. C., Watters L. C., King T. E., Mason R. J. Idiopathic pulmonary fibrosis. Abnormalities in bronchoalveolar lavage fluid phospholipids. Am Rev Respir Dis. 1988 Mar;137(3):585–591. doi: 10.1164/ajrccm/137.3.585. [DOI] [PubMed] [Google Scholar]
  43. Rooney S. A. Fatty acid biosynthesis in developing fetal lung. Am J Physiol. 1989 Oct;257(4 Pt 1):L195–L201. doi: 10.1152/ajplung.1989.257.4.L195. [DOI] [PubMed] [Google Scholar]
  44. Rooney S. A. The surfactant system and lung phospholipid biochemistry. Am Rev Respir Dis. 1985 Mar;131(3):439–460. doi: 10.1164/arrd.1985.131.3.439. [DOI] [PubMed] [Google Scholar]
  45. Seeger W., Grube C., Günther A. Proteolytic cleavage of fibrinogen: amplification of its surfactant inhibitory capacity. Am J Respir Cell Mol Biol. 1993 Sep;9(3):239–247. doi: 10.1165/ajrcmb/9.3.239. [DOI] [PubMed] [Google Scholar]
  46. Shiratori Y., Okwu A. K., Tabas I. Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1994 Apr 15;269(15):11337–11348. [PubMed] [Google Scholar]
  47. Sparks C. E., Dehoff J. L., Capuzzi D. M., Pietra G., Marsh J. B. Proteolysis of very low density lipoprotein in perfused lung. Biochim Biophys Acta. 1978 Apr 28;529(1):123–130. doi: 10.1016/0005-2760(78)90110-8. [DOI] [PubMed] [Google Scholar]
  48. Spragg R. G., Gilliard N., Richman P., Smith R. M., Hite R. D., Pappert D., Robertson B., Curstedt T., Strayer D. Acute effects of a single dose of porcine surfactant on patients with the adult respiratory distress syndrome. Chest. 1994 Jan;105(1):195–202. doi: 10.1378/chest.105.1.195. [DOI] [PubMed] [Google Scholar]
  49. Stefansson S., Kounnas M. Z., Henkin J., Mallampalli R. K., Chappell D. A., Strickland D. K., Argraves W. S. gp330 on type II pneumocytes mediates endocytosis leading to degradation of pro-urokinase, plasminogen activator inhibitor-1 and urokinase-plasminogen activator inhibitor-1 complex. J Cell Sci. 1995 Jun;108(Pt 6):2361–2368. doi: 10.1242/jcs.108.6.2361. [DOI] [PubMed] [Google Scholar]
  50. Strickland D. K., Kounnas M. Z., Argraves W. S. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J. 1995 Jul;9(10):890–898. doi: 10.1096/fasebj.9.10.7615159. [DOI] [PubMed] [Google Scholar]
  51. Torday J., Hua J., Slavin R. Metabolism and fate of neutral lipids of fetal lung fibroblast origin. Biochim Biophys Acta. 1995 Jan 20;1254(2):198–206. doi: 10.1016/0005-2760(94)00184-z. [DOI] [PubMed] [Google Scholar]
  52. Voyno-Yasenetskaya T. A., Dobbs L. G., Erickson S. K., Hamilton R. L. Low density lipoprotein- and high density lipoprotein-mediated signal transduction and exocytosis in alveolar type II cells. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4256–4260. doi: 10.1073/pnas.90.9.4256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Walkey C. J., Kalmar G. B., Cornell R. B. Overexpression of rat liver CTP:phosphocholine cytidylyltransferase accelerates phosphatidylcholine synthesis and degradation. J Biol Chem. 1994 Feb 25;269(8):5742–5749. [PubMed] [Google Scholar]
  54. Wang Y., MacDonald J. I., Kent C. Regulation of CTP:phosphocholine cytidylyltransferase in HeLa cells. Effect of oleate on phosphorylation and intracellular localization. J Biol Chem. 1993 Mar 15;268(8):5512–5518. [PubMed] [Google Scholar]
  55. Williams S. E., Inoue I., Tran H., Fry G. L., Pladet M. W., Iverius P. H., Lalouel J. M., Chappell D. A., Strickland D. K. The carboxyl-terminal domain of lipoprotein lipase binds to the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) and mediates binding of normal very low density lipoproteins to LRP. J Biol Chem. 1994 Mar 25;269(12):8653–8658. [PubMed] [Google Scholar]
  56. Willnow T. E., Hilpert J., Armstrong S. A., Rohlmann A., Hammer R. E., Burns D. K., Herz J. Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8460–8464. doi: 10.1073/pnas.93.16.8460. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES