Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 1;99(9):2062–2070. doi: 10.1172/JCI119377

Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated?

R D Rosenberg 1, N W Shworak 1, J Liu 1, J J Schwartz 1, L Zhang 1
PMCID: PMC508034  PMID: 9151776

Full Text

The Full Text of this article is available as a PDF (322.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asundi V. K., Carey D. J. Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. J Biol Chem. 1995 Nov 3;270(44):26404–26410. doi: 10.1074/jbc.270.44.26404. [DOI] [PubMed] [Google Scholar]
  2. Atha D. H., Lormeau J. C., Petitou M., Rosenberg R. D., Choay J. Contribution of 3-O- and 6-O-sulfated glucosamine residues in the heparin-induced conformational change in antithrombin III. Biochemistry. 1987 Oct 6;26(20):6454–6461. doi: 10.1021/bi00394a024. [DOI] [PubMed] [Google Scholar]
  3. Atha D. H., Lormeau J. C., Petitou M., Rosenberg R. D., Choay J. Contribution of monosaccharide residues in heparin binding to antithrombin III. Biochemistry. 1985 Nov 5;24(23):6723–6729. doi: 10.1021/bi00344a063. [DOI] [PubMed] [Google Scholar]
  4. Aviezer D., Hecht D., Safran M., Eisinger M., David G., Yayon A. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell. 1994 Dec 16;79(6):1005–1013. doi: 10.1016/0092-8674(94)90031-0. [DOI] [PubMed] [Google Scholar]
  5. Baciu P. C., Goetinck P. F. Protein kinase C regulates the recruitment of syndecan-4 into focal contacts. Mol Biol Cell. 1995 Nov;6(11):1503–1513. doi: 10.1091/mbc.6.11.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bai X., Esko J. D. An animal cell mutant defective in heparan sulfate hexuronic acid 2-O-sulfation. J Biol Chem. 1996 Jul 26;271(30):17711–17717. doi: 10.1074/jbc.271.30.17711. [DOI] [PubMed] [Google Scholar]
  7. Bernfield M., Kokenyesi R., Kato M., Hinkes M. T., Spring J., Gallo R. L., Lose E. J. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–393. doi: 10.1146/annurev.cb.08.110192.002053. [DOI] [PubMed] [Google Scholar]
  8. Brickman Y. G., Ford M. D., Small D. H., Bartlett P. F., Nurcombe V. Heparan sulfates mediate the binding of basic fibroblast growth factor to a specific receptor on neural precursor cells. J Biol Chem. 1995 Oct 20;270(42):24941–24948. doi: 10.1074/jbc.270.42.24941. [DOI] [PubMed] [Google Scholar]
  9. Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21–32. doi: 10.1161/01.atv.9.1.21. [DOI] [PubMed] [Google Scholar]
  10. Carey D. J., Bendt K. M., Stahl R. C. The cytoplasmic domain of syndecan-1 is required for cytoskeleton association but not detergent insolubility. Identification of essential cytoplasmic domain residues. J Biol Chem. 1996 Jun 21;271(25):15253–15260. doi: 10.1074/jbc.271.25.15253. [DOI] [PubMed] [Google Scholar]
  11. Carrell R. W., Stein P. E., Fermi G., Wardell M. R. Biological implications of a 3 A structure of dimeric antithrombin. Structure. 1994 Apr 15;2(4):257–270. doi: 10.1016/s0969-2126(00)00028-9. [DOI] [PubMed] [Google Scholar]
  12. Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem. 1985;43:51–134. doi: 10.1016/s0065-2318(08)60067-0. [DOI] [PubMed] [Google Scholar]
  13. Cheng C. F., Oosta G. M., Bensadoun A., Rosenberg R. D. Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem. 1981 Dec 25;256(24):12893–12898. [PubMed] [Google Scholar]
  14. Cheung W. F., Eriksson I., Kusche-Gullberg M., Lindhal U., Kjellén L. Expression of the mouse mastocytoma glucosaminyl N-deacetylase/ N-sulfotransferase in human kidney 293 cells results in increased N-sulfation of heparan sulfate. Biochemistry. 1996 Apr 23;35(16):5250–5256. doi: 10.1021/bi952325b. [DOI] [PubMed] [Google Scholar]
  15. Choay J., Petitou M., Lormeau J. C., Sinaÿ P., Casu B., Gatti G. Structure-activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun. 1983 Oct 31;116(2):492–499. doi: 10.1016/0006-291x(83)90550-8. [DOI] [PubMed] [Google Scholar]
  16. Colliec-Jouault S., Shworak N. W., Liu J., de Agostini A. I., Rosenberg R. D. Characterization of a cell mutant specifically defective in the synthesis of anticoagulantly active heparan sulfate. J Biol Chem. 1994 Oct 7;269(40):24953–24958. [PubMed] [Google Scholar]
  17. Conrad H. E. Structure of heparan sulfate and dermatan sulfate. Ann N Y Acad Sci. 1989;556:18–28. doi: 10.1111/j.1749-6632.1989.tb22486.x. [DOI] [PubMed] [Google Scholar]
  18. David G., Lories V., Decock B., Marynen P., Cassiman J. J., Van den Berghe H. Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J Cell Biol. 1990 Dec;111(6 Pt 2):3165–3176. doi: 10.1083/jcb.111.6.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dolan M., Horchar T., Rigatti B., Hassell J. R. Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J Biol Chem. 1997 Feb 14;272(7):4316–4322. doi: 10.1074/jbc.272.7.4316. [DOI] [PubMed] [Google Scholar]
  20. Edge A. S., Spiro R. G. Characterization of novel sequences containing 3-O-sulfated glucosamine in glomerular basement membrane heparan sulfate and localization of sulfated disaccharides to a peripheral domain. J Biol Chem. 1990 Sep 15;265(26):15874–15881. [PubMed] [Google Scholar]
  21. Eisenberg S., Sehayek E., Olivecrona T., Vlodavsky I. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J Clin Invest. 1992 Nov;90(5):2013–2021. doi: 10.1172/JCI116081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Eriksson I., Sandbäck D., Ek B., Lindahl U., Kjellén L. cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase, an enzyme involved in the biosynthesis of heparin. J Biol Chem. 1994 Apr 8;269(14):10438–10443. [PubMed] [Google Scholar]
  23. Esko J. D., Zhang L. Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol. 1996 Oct;6(5):663–670. doi: 10.1016/s0959-440x(96)80034-0. [DOI] [PubMed] [Google Scholar]
  24. Faham S., Hileman R. E., Fromm J. R., Linhardt R. J., Rees D. C. Heparin structure and interactions with basic fibroblast growth factor. Science. 1996 Feb 23;271(5252):1116–1120. doi: 10.1126/science.271.5252.1116. [DOI] [PubMed] [Google Scholar]
  25. Fernández-Borja M., Bellido D., Vilella E., Olivecrona G., Vilaró S. Lipoprotein lipase-mediated uptake of lipoprotein in human fibroblasts: evidence for an LDL receptor-independent internalization pathway. J Lipid Res. 1996 Mar;37(3):464–481. [PubMed] [Google Scholar]
  26. Gettins P. G., Fan B., Crews B. C., Turko I. V., Olson S. T., Streusand V. J. Transmission of conformational change from the heparin binding site to the reactive center of antithrombin. Biochemistry. 1993 Aug 24;32(33):8385–8389. doi: 10.1021/bi00084a001. [DOI] [PubMed] [Google Scholar]
  27. Goldberg I. J. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996 Apr;37(4):693–707. [PubMed] [Google Scholar]
  28. Guimond S., Maccarana M., Olwin B. B., Lindahl U., Rapraeger A. C. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem. 1993 Nov 15;268(32):23906–23914. [PubMed] [Google Scholar]
  29. Guyton J. R., Rosenberg R. D., Clowes A. W., Karnovsky M. J. Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res. 1980 May;46(5):625–634. doi: 10.1161/01.res.46.5.625. [DOI] [PubMed] [Google Scholar]
  30. Habuchi H., Habuchi O., Kimata K. Purification and characterization of heparan sulfate 6-sulfotransferase from the culture medium of Chinese hamster ovary cells. J Biol Chem. 1995 Feb 24;270(8):4172–4179. doi: 10.1074/jbc.270.8.4172. [DOI] [PubMed] [Google Scholar]
  31. Habuchi H., Suzuki S., Saito T., Tamura T., Harada T., Yoshida K., Kimata K. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem J. 1992 Aug 1;285(Pt 3):805–813. doi: 10.1042/bj2850805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hashimoto Y., Orellana A., Gil G., Hirschberg C. B. Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J Biol Chem. 1992 Aug 5;267(22):15744–15750. [PubMed] [Google Scholar]
  33. Hata A., Ridinger D. N., Sutherland S., Emi M., Shuhua Z., Myers R. L., Ren K., Cheng T., Inoue I., Wilson D. E. Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J Biol Chem. 1993 Apr 25;268(12):8447–8457. [PubMed] [Google Scholar]
  34. Hoogewerf A. J., Cisar L. A., Evans D. C., Bensadoun A. Effect of chlorate on the sulfation of lipoprotein lipase and heparan sulfate proteoglycans. Sulfation of heparan sulfate proteoglycans affects lipoprotein lipase degradation. J Biol Chem. 1991 Sep 5;266(25):16564–16571. [PubMed] [Google Scholar]
  35. Ishihara M., Guo Y., Wei Z., Yang Z., Swiedler S. J., Orellana A., Hirschberg C. B. Regulation of biosynthesis of the basic fibroblast growth factor binding domains of heparan sulfate by heparan sulfate-N-deacetylase/N-sulfotransferase expression. J Biol Chem. 1993 Sep 25;268(27):20091–20095. [PubMed] [Google Scholar]
  36. Itano N., Oguri K., Nagayasu Y., Kusano Y., Nakanishi H., David G., Okayama M. Phosphorylation of a membrane-intercalated proteoglycan, syndecan-2, expressed in a stroma-inducing clone from a mouse Lewis lung carcinoma. Biochem J. 1996 May 1;315(Pt 3):925–930. doi: 10.1042/bj3150925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Itoh K., Sokol S. Y. Heparan sulfate proteoglycans are required for mesoderm formation in Xenopus embryos. Development. 1994 Sep;120(9):2703–2711. doi: 10.1242/dev.120.9.2703. [DOI] [PubMed] [Google Scholar]
  38. Ji Z. S., Fazio S., Mahley R. W. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem. 1994 May 6;269(18):13421–13428. [PubMed] [Google Scholar]
  39. Kan M., Wang F., Xu J., Crabb J. W., Hou J., McKeehan W. L. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993 Mar 26;259(5103):1918–1921. doi: 10.1126/science.8456318. [DOI] [PubMed] [Google Scholar]
  40. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kobayashi M., Habuchi H., Habuchi O., Saito M., Kimata K. Purification and characterization of heparan sulfate 2-sulfotransferase from cultured Chinese hamster ovary cells. J Biol Chem. 1996 Mar 29;271(13):7645–7653. doi: 10.1074/jbc.271.13.7645. [DOI] [PubMed] [Google Scholar]
  42. Krufka A., Guimond S., Rapraeger A. C. Two hierarchies of FGF-2 signaling in heparin: mitogenic stimulation and high-affinity binding/receptor transphosphorylation. Biochemistry. 1996 Aug 27;35(34):11131–11141. doi: 10.1021/bi960125+. [DOI] [PubMed] [Google Scholar]
  43. Lam L. H., Silbert J. E., Rosenberg R. D. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):570–577. doi: 10.1016/0006-291x(76)90558-1. [DOI] [PubMed] [Google Scholar]
  44. Larnkjaer A., Nykjaer A., Olivecrona G., Thøgersen H., Ostergaard P. B. Structure of heparin fragments with high affinity for lipoprotein lipase and inhibition of lipoprotein lipase binding to alpha 2-macroglobulin-receptor/low-density-lipoprotein-receptor-related protein by heparin fragments. Biochem J. 1995 Apr 1;307(Pt 1):205–214. doi: 10.1042/bj3070205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lind T., Lindahl U., Lidholt K. Biosynthesis of heparin/heparan sulfate. Identification of a 70-kDa protein catalyzing both the D-glucuronosyl- and the N-acetyl-D-glucosaminyltransferase reactions. J Biol Chem. 1993 Oct 5;268(28):20705–20708. [PubMed] [Google Scholar]
  46. Lindahl U., Bäckström G., Thunberg L., Leder I. G. Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6551–6555. doi: 10.1073/pnas.77.11.6551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Liu J., Shworak N. W., Fritze L. M., Edelberg J. M., Rosenberg R. D. Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem. 1996 Oct 25;271(43):27072–27082. doi: 10.1074/jbc.271.43.27072. [DOI] [PubMed] [Google Scholar]
  48. Lookene A., Chevreuil O., Ostergaard P., Olivecrona G. Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics. Biochemistry. 1996 Sep 17;35(37):12155–12163. doi: 10.1021/bi960008e. [DOI] [PubMed] [Google Scholar]
  49. Maccarana M., Casu B., Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem. 1993 Nov 15;268(32):23898–23905. [PubMed] [Google Scholar]
  50. Mertens G., Van der Schueren B., van den Berghe H., David G. Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. J Cell Biol. 1996 Feb;132(3):487–497. doi: 10.1083/jcb.132.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Murdoch A. D., Dodge G. R., Cohen I., Tuan R. S., Iozzo R. V. Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Biol Chem. 1992 Apr 25;267(12):8544–8557. [PubMed] [Google Scholar]
  52. Nakato H., Futch T. A., Selleck S. B. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development. 1995 Nov;121(11):3687–3702. doi: 10.1242/dev.121.11.3687. [DOI] [PubMed] [Google Scholar]
  53. Nathan A., Nugent M. A., Edelman E. R. Tissue engineered perivascular endothelial cell implants regulate vascular injury. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8130–8134. doi: 10.1073/pnas.92.18.8130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Nelson R. M., Venot A., Bevilacqua M. P., Linhardt R. J., Stamenkovic I. Carbohydrate-protein interactions in vascular biology. Annu Rev Cell Dev Biol. 1995;11:601–631. doi: 10.1146/annurev.cb.11.110195.003125. [DOI] [PubMed] [Google Scholar]
  55. Nielsen M. S., Brejning J., García R., Zhang H., Hayden M. R., Vilaró S., Gliemann J. Segments in the C-terminal folding domain of lipoprotein lipase important for binding to the low density lipoprotein receptor-related protein and to heparan sulfate proteoglycans. J Biol Chem. 1997 Feb 28;272(9):5821–5827. doi: 10.1074/jbc.272.9.5821. [DOI] [PubMed] [Google Scholar]
  56. Nikkari S. T., Järveläinen H. T., Wight T. N., Ferguson M., Clowes A. W. Smooth muscle cell expression of extracellular matrix genes after arterial injury. Am J Pathol. 1994 Jun;144(6):1348–1356. [PMC free article] [PubMed] [Google Scholar]
  57. Noonan D. M., Fulle A., Valente P., Cai S., Horigan E., Sasaki M., Yamada Y., Hassell J. R. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J Biol Chem. 1991 Dec 5;266(34):22939–22947. [PubMed] [Google Scholar]
  58. Obunike J. C., Edwards I. J., Rumsey S. C., Curtiss L. K., Wagner W. D., Deckelbaum R. J., Goldberg I. J. Cellular differences in lipoprotein lipase-mediated uptake of low density lipoproteins. J Biol Chem. 1994 May 6;269(18):13129–13135. [PubMed] [Google Scholar]
  59. Olson S. T., Björk I. Regulation of thrombin activity by antithrombin and heparin. Semin Thromb Hemost. 1994;20(4):373–409. doi: 10.1055/s-2007-1001928. [DOI] [PubMed] [Google Scholar]
  60. Olwin B. B., Rapraeger A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol. 1992 Aug;118(3):631–639. doi: 10.1083/jcb.118.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Orellana A., Hirschberg C. B., Wei Z., Swiedler S. J., Ishihara M. Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem. 1994 Jan 21;269(3):2270–2276. [PubMed] [Google Scholar]
  62. Ornitz D. M., Herr A. B., Nilsson M., Westman J., Svahn C. M., Waksman G. FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science. 1995 Apr 21;268(5209):432–436. doi: 10.1126/science.7536345. [DOI] [PubMed] [Google Scholar]
  63. Ornitz D. M., Leder P. Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J Biol Chem. 1992 Aug 15;267(23):16305–16311. [PubMed] [Google Scholar]
  64. Parthasarathy N., Goldberg I. J., Sivaram P., Mulloy B., Flory D. M., Wagner W. D. Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J Biol Chem. 1994 Sep 2;269(35):22391–22396. [PubMed] [Google Scholar]
  65. Perrimon N. Serpentine proteins slither into the wingless and hedgehog fields. Cell. 1996 Aug 23;86(4):513–516. doi: 10.1016/s0092-8674(00)80124-5. [DOI] [PubMed] [Google Scholar]
  66. Reichsman F., Smith L., Cumberledge S. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J Cell Biol. 1996 Nov;135(3):819–827. doi: 10.1083/jcb.135.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Rosenberg R. D., Damus P. S. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem. 1973 Sep 25;248(18):6490–6505. [PubMed] [Google Scholar]
  68. Rosenberg R. D., Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1218–1222. doi: 10.1073/pnas.76.3.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Sanderson R. D., Turnbull J. E., Gallagher J. T., Lander A. D. Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J Biol Chem. 1994 May 6;269(18):13100–13106. [PubMed] [Google Scholar]
  70. Saxena U., Klein M. G., Goldberg I. J. Identification and characterization of the endothelial cell surface lipoprotein lipase receptor. J Biol Chem. 1991 Sep 15;266(26):17516–17521. [PubMed] [Google Scholar]
  71. Saxena U., Klein M. G., Goldberg I. J. Transport of lipoprotein lipase across endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2254–2258. doi: 10.1073/pnas.88.6.2254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Shworak N. W., Fritze L. M., Liu J., Butler L. D., Rosenberg R. D. Cell-free synthesis of anticoagulant heparan sulfate reveals a limiting converting activity that modifies an excess precursor pool. J Biol Chem. 1996 Oct 25;271(43):27063–27071. [PubMed] [Google Scholar]
  73. Shworak N. W., Shirakawa M., Colliec-Jouault S., Liu J., Mulligan R. C., Birinyi L. K., Rosenberg R. D. Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate. J Biol Chem. 1994 Oct 7;269(40):24941–24952. [PubMed] [Google Scholar]
  74. Shworak N. W., Shirakawa M., Mulligan R. C., Rosenberg R. D. Characterization of ryudocan glycosaminoglycan acceptor sites. J Biol Chem. 1994 Aug 19;269(33):21204–21214. [PubMed] [Google Scholar]
  75. Simionescu M., Simionescu N., Silbert J. E., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol. 1981 Sep;90(3):614–621. doi: 10.1083/jcb.90.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Sugahara K., Tsuda H., Yoshida K., Yamada S., de Beer T., Vliegenthart J. F. Structure determination of the octa- and decasaccharide sequences isolated from the carbohydrate-protein linkage region of porcine intestinal heparin. J Biol Chem. 1995 Sep 29;270(39):22914–22923. doi: 10.1074/jbc.270.39.22914. [DOI] [PubMed] [Google Scholar]
  77. Turnbull J. E., Fernig D. G., Ke Y., Wilkinson M. C., Gallagher J. T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem. 1992 May 25;267(15):10337–10341. [PubMed] [Google Scholar]
  78. Ueno H., Gunn M., Dell K., Tseng A., Jr, Williams L. A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J Biol Chem. 1992 Jan 25;267(3):1470–1476. [PubMed] [Google Scholar]
  79. Weksberg R., Squire J. A., Templeton D. M. Glypicans: a growing trend. Nat Genet. 1996 Mar;12(3):225–227. doi: 10.1038/ng0396-225. [DOI] [PubMed] [Google Scholar]
  80. Yanagishita M., Hascall V. C. Cell surface heparan sulfate proteoglycans. J Biol Chem. 1992 May 15;267(14):9451–9454. [PubMed] [Google Scholar]
  81. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
  82. Yost H. J. Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature. 1992 May 14;357(6374):158–161. doi: 10.1038/357158a0. [DOI] [PubMed] [Google Scholar]
  83. van Tilbeurgh H., Roussel A., Lalouel J. M., Cambillau C. Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J Biol Chem. 1994 Feb 11;269(6):4626–4633. [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES