Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 1;99(9):2192–2202. doi: 10.1172/JCI119392

Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor.

R G Tilton 1, T Kawamura 1, K C Chang 1, Y Ido 1, R J Bjercke 1, C C Stephan 1, T A Brock 1, J R Williamson 1
PMCID: PMC508049  PMID: 9151791

Abstract

The purpose of these experiments was to investigate a potential role for vascular endothelial growth factor (VEGF) in mediating vascular dysfunction induced by increased glucose flux via the sorbitol pathway. Skin chambers were mounted on the backs of Sprague-Dawley rats and 1 wk later, granulation tissue in the chamber was exposed twice daily for 7 d to 5 mM glucose, 30 mM glucose, or 1 mM sorbitol in the presence and absence of neutralizing VEGF antibodies. Albumin permeation and blood flow were increased two- to three-fold by 30 mM glucose and 1 mM sorbitol; these increases were prevented by coadministration of neutralizing VEGF antibodies. Blood flow and albumin permeation were increased approximately 2.5-fold 1 h after topical application of recombinant human VEGF and these effects were prevented by nitric oxide synthase (NOS) inhibitors (aminoguanidine and N(G)-monomethyl L-arginine). Topical application of a superoxide generating system increased albumin permeation and blood flow and these changes were markedly attenuated by VEGF antibody and NOS inhibitors. Application of sodium nitroprusside for 7 d or the single application of a calcium ionophore, A23187, mimicked effects of glucose, sorbitol, and VEGF on vascular dysfunction and the ionophore effect was prevented by coadministration of aminoguanidine. These observations suggest a potentially important role for VEGF in mediating vascular dysfunction induced by "hypoxia-like" cytosolic metabolic imbalances (reductive stress, increased superoxide, and nitric oxide production) linked to increased flux of glucose via the sorbitol pathway.

Full Text

The Full Text of this article is available as a PDF (433.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiello L. P., Northrup J. M., Keyt B. A., Takagi H., Iwamoto M. A. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol. 1995 Dec;113(12):1538–1544. doi: 10.1001/archopht.1995.01100120068012. [DOI] [PubMed] [Google Scholar]
  2. Arnet U. A., McMillan A., Dinerman J. L., Ballermann B., Lowenstein C. J. Regulation of endothelial nitric-oxide synthase during hypoxia. J Biol Chem. 1996 Jun 21;271(25):15069–15073. doi: 10.1074/jbc.271.25.15069. [DOI] [PubMed] [Google Scholar]
  3. Bjercke R. J., Cook G., Rychlik N., Gjika H. B., Van Vunakis H., Langone J. J. Stereospecific monoclonal antibodies to nicotine and cotinine and their use in enzyme-linked immunosorbent assays. J Immunol Methods. 1986 Jun 24;90(2):203–213. doi: 10.1016/0022-1759(86)90077-3. [DOI] [PubMed] [Google Scholar]
  4. Brock T. A., Capasso E. A. Thrombin and histamine activate phospholipase C in human endothelial cells via a phorbol ester-sensitive pathway. J Cell Physiol. 1988 Jul;136(1):54–62. doi: 10.1002/jcp.1041360107. [DOI] [PubMed] [Google Scholar]
  5. Brock T. A., Dvorak H. F., Senger D. R. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol. 1991 Jan;138(1):213–221. [PMC free article] [PubMed] [Google Scholar]
  6. Bünger R., Mallet R. T., Hartman D. A. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem. 1989 Mar 1;180(1):221–233. doi: 10.1111/j.1432-1033.1989.tb14637.x. [DOI] [PubMed] [Google Scholar]
  7. Cavallini L., Valente M., Rigobello M. P. The protective action of pyruvate on recovery of ischemic rat heart: comparison with other oxidizable substrates. J Mol Cell Cardiol. 1990 Feb;22(2):143–154. doi: 10.1016/0022-2828(90)91111-j. [DOI] [PubMed] [Google Scholar]
  8. Chi M. M., Pusateri M. E., Carter J. G., Norris B. J., McDougal D. B., Jr, Lowry O. H. Enzymatic assays for 2-deoxyglucose and 2-deoxyglucose 6-phosphate. Anal Biochem. 1987 Mar;161(2):508–513. doi: 10.1016/0003-2697(87)90481-7. [DOI] [PubMed] [Google Scholar]
  9. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
  10. Dvorak H. F., Brown L. F., Detmar M., Dvorak A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995 May;146(5):1029–1039. [PMC free article] [PubMed] [Google Scholar]
  11. Fiebich B. L., Jäger B., Schöllmann C., Weindel K., Wilting J., Kochs G., Marmé D., Hug H., Weich H. A. Synthesis and assembly of functionally active human vascular endothelial growth factor homodimers in insect cells. Eur J Biochem. 1993 Jan 15;211(1-2):19–26. doi: 10.1111/j.1432-1033.1993.tb19865.x. [DOI] [PubMed] [Google Scholar]
  12. Goldberg M. A., Schneider T. J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994 Feb 11;269(6):4355–4359. [PubMed] [Google Scholar]
  13. Greene D. A., Lattimer S., Ulbrecht J., Carroll P. Glucose-induced alterations in nerve metabolism: current perspective on the pathogenesis of diabetic neuropathy and future directions for research and therapy. Diabetes Care. 1985 May-Jun;8(3):290–299. doi: 10.2337/diacare.8.3.290. [DOI] [PubMed] [Google Scholar]
  14. Inaba T., Ishibashi S., Gotoda T., Kawamura M., Morino N., Nojima Y., Kawakami M., Yazaki Y., Yamada N. Enhanced expression of platelet-derived growth factor-beta receptor by high glucose. Involvement of platelet-derived growth factor in diabetic angiopathy. Diabetes. 1996 Apr;45(4):507–512. doi: 10.2337/diab.45.4.507. [DOI] [PubMed] [Google Scholar]
  15. Kinoshita J. H., Nishimura C. The involvement of aldose reductase in diabetic complications. Diabetes Metab Rev. 1988 Jun;4(4):323–337. doi: 10.1002/dmr.5610040403. [DOI] [PubMed] [Google Scholar]
  16. Ku D. D., Zaleski J. K., Liu S., Brock T. A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol. 1993 Aug;265(2 Pt 2):H586–H592. doi: 10.1152/ajpheart.1993.265.2.H586. [DOI] [PubMed] [Google Scholar]
  17. Köhler G., Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976 Jul;6(7):511–519. doi: 10.1002/eji.1830060713. [DOI] [PubMed] [Google Scholar]
  18. Ladoux A., Frelin C. Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1005–1010. doi: 10.1006/bbrc.1993.2144. [DOI] [PubMed] [Google Scholar]
  19. Leibovich S. J., Polverini P. J., Fong T. W., Harlow L. A., Koch A. E. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4190–4194. doi: 10.1073/pnas.91.10.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lou M. F., Dickerson J. E., Jr, Garadi R., York B. M., Jr Glutathione depletion in the lens of galactosemic and diabetic rats. Exp Eye Res. 1988 Apr;46(4):517–530. doi: 10.1016/s0014-4835(88)80009-5. [DOI] [PubMed] [Google Scholar]
  21. Lundberg C., Gerdin B. The inflammatory reaction in an experimental model of open wounds in the rat. The effect of arachidonic acid metabolites. Eur J Pharmacol. 1984 Jan 27;97(3-4):229–238. doi: 10.1016/0014-2999(84)90454-0. [DOI] [PubMed] [Google Scholar]
  22. Minchenko A., Bauer T., Salceda S., Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest. 1994 Sep;71(3):374–379. [PubMed] [Google Scholar]
  23. Morbidelli L., Chang C. H., Douglas J. G., Granger H. J., Ledda F., Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H411–H415. doi: 10.1152/ajpheart.1996.270.1.H411. [DOI] [PubMed] [Google Scholar]
  24. Namiki A., Brogi E., Kearney M., Kim E. A., Wu T., Couffinhal T., Varticovski L., Isner J. M. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem. 1995 Dec 29;270(52):31189–31195. doi: 10.1074/jbc.270.52.31189. [DOI] [PubMed] [Google Scholar]
  25. Plate K. H., Breier G., Weich H. A., Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992 Oct 29;359(6398):845–848. doi: 10.1038/359845a0. [DOI] [PubMed] [Google Scholar]
  26. Pugliese G., Tilton R. G., Speedy A., Chang K., Province M. A., Kilo C., Williamson J. R. Vascular filtration function in galactose-fed versus diabetic rats: the role of polyol pathway activity. Metabolism. 1990 Jul;39(7):690–697. doi: 10.1016/0026-0495(90)90102-i. [DOI] [PubMed] [Google Scholar]
  27. Pugliese G., Tilton R. G., Williamson J. R. Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease. Diabetes Metab Rev. 1991 Mar;7(1):35–59. doi: 10.1002/dmr.5610070106. [DOI] [PubMed] [Google Scholar]
  28. Ruderman N. B., Williamson J. R., Brownlee M. Glucose and diabetic vascular disease. FASEB J. 1992 Aug;6(11):2905–2914. doi: 10.1096/fasebj.6.11.1644256. [DOI] [PubMed] [Google Scholar]
  29. Shweiki D., Itin A., Soffer D., Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992 Oct 29;359(6398):843–845. doi: 10.1038/359843a0. [DOI] [PubMed] [Google Scholar]
  30. Shweiki D., Neeman M., Itin A., Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):768–772. doi: 10.1073/pnas.92.3.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sone H., Kawakami Y., Okuda Y., Kondo S., Hanatani M., Suzuki H., Yamashita K. Vascular endothelial growth factor is induced by long-term high glucose concentration and up-regulated by acute glucose deprivation in cultured bovine retinal pigmented epithelial cells. Biochem Biophys Res Commun. 1996 Apr 5;221(1):193–198. doi: 10.1006/bbrc.1996.0568. [DOI] [PubMed] [Google Scholar]
  32. Stevens M. J., Dananberg J., Feldman E. L., Lattimer S. A., Kamijo M., Thomas T. P., Shindo H., Sima A. A., Greene D. A. The linked roles of nitric oxide, aldose reductase and, (Na+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest. 1994 Aug;94(2):853–859. doi: 10.1172/JCI117406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tilton R. G., Baier L. D., Harlow J. E., Smith S. R., Ostrow E., Williamson J. R. Diabetes-induced glomerular dysfunction: links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int. 1992 Apr;41(4):778–788. doi: 10.1038/ki.1992.121. [DOI] [PubMed] [Google Scholar]
  34. Tilton R. G., Chang K., Hasan K. S., Smith S. R., Petrash J. M., Misko T. P., Moore W. M., Currie M. G., Corbett J. A., McDaniel M. L. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993 Feb;42(2):221–232. doi: 10.2337/diab.42.2.221. [DOI] [PubMed] [Google Scholar]
  35. Tilton R. G., Chang K., Nyengaard J. R., Van den Enden M., Ido Y., Williamson J. R. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes. 1995 Feb;44(2):234–242. doi: 10.2337/diab.44.2.234. [DOI] [PubMed] [Google Scholar]
  36. Tilton R. G., Chang K., Pugliese G., Eades D. M., Province M. A., Sherman W. R., Kilo C., Williamson J. R. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes. 1989 Oct;38(10):1258–1270. doi: 10.2337/diab.38.10.1258. [DOI] [PubMed] [Google Scholar]
  37. Van den Enden M. K., Nyengaard J. R., Ostrow E., Burgan J. H., Williamson J. R. Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy. Invest Ophthalmol Vis Sci. 1995 Jul;36(8):1675–1685. [PubMed] [Google Scholar]
  38. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Williamson J. R., Chang K., Frangos M., Hasan K. S., Ido Y., Kawamura T., Nyengaard J. R., van den Enden M., Kilo C., Tilton R. G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993 Jun;42(6):801–813. doi: 10.2337/diab.42.6.801. [DOI] [PubMed] [Google Scholar]
  40. Williamson J. R., Ostrow E., Eades D., Chang K., Allison W., Kilo C., Sherman W. R. Glucose-induced microvascular functional changes in nondiabetic rats are stereospecific and are prevented by an aldose reductase inhibitor. J Clin Invest. 1990 Apr;85(4):1167–1172. doi: 10.1172/JCI114549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Winegrad A. I. Banting lecture 1986. Does a common mechanism induce the diverse complications of diabetes? Diabetes. 1987 Mar;36(3):396–406. doi: 10.2337/diab.36.3.396. [DOI] [PubMed] [Google Scholar]
  42. Wolf B. A., Williamson J. R., Easom R. A., Chang K., Sherman W. R., Turk J. Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest. 1991 Jan;87(1):31–38. doi: 10.1172/JCI114988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wolff D. J., Lubeskie A. Aminoguanidine is an isoform-selective, mechanism-based inactivator of nitric oxide synthase. Arch Biochem Biophys. 1995 Jan 10;316(1):290–301. doi: 10.1006/abbi.1995.1040. [DOI] [PubMed] [Google Scholar]
  44. Xu X. P., Pollock J. S., Tanner M. A., Myers P. R. Hypoxia activates nitric oxide synthase and stimulates nitric oxide production in porcine coronary resistance arteriolar endothelial cells. Cardiovasc Res. 1995 Dec;30(6):841–847. [PubMed] [Google Scholar]
  45. Yang R., Thomas G. R., Bunting S., Ko A., Ferrara N., Keyt B., Ross J., Jin H. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol. 1996 Jun;27(6):838–844. doi: 10.1097/00005344-199606000-00011. [DOI] [PubMed] [Google Scholar]
  46. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H. J., Maggi C. A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994 Nov;94(5):2036–2044. doi: 10.1172/JCI117557. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES