Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 May 1;99(9):2212–2218. doi: 10.1172/JCI119394

Increased blood pressure in rats after long-term inhibition of the neuronal isoform of nitric oxide synthase.

A Ollerstam 1, J Pittner 1, A E Persson 1, C Thorup 1
PMCID: PMC508051  PMID: 9151793

Abstract

In the kidney, nitric oxide synthase (NOS) of the neuronal isoform (nNOS) is predominantly located in the macula densa cells. Unspecific chronic NOS inhibition in rats leads to elevated blood pressure (P(A)), associated with increased renal vascular resistance. This study was designed to examine the effect of chronic selective inhibition of nNOS with 7-nitro indazole (7-NI) on P(A), GFR, and the tubuloglomerular feedback (TGF) system. P(A) was repeatedly measured by a noninvasive tail-cuff technique for 4 wk in rats treated orally with 7-NI, and in control rats. After treatment, the animals were anesthetized and renal excretion rates, GFR, and TGF activity were determined. After 1 wk of 7-NI treatment P(A) was increased from 129+/-4 to 143 2 mmHg. GFR (1.85+/-0.1 vs. 1.97+/-0.2 ml/min in controls) was unchanged, but micropuncture studies revealed a more sensitive TGF than in controls. After 4 wk of 7-NI treatment P(A) was 152+/-4 mmHg, but no change in GFR (1.90+/-0.5 ml/min) or TGF sensitivity was detected. Acute administration of 7-NI to nontreated rats did not affect P(A), but decreased GFR (1.49+/-0.1 ml/min) and increased TGF sensitivity. In conclusion, chronic nNOS inhibition leads to increased P(A). Our results suggest that the elevated P(A) could be caused by an initially increased TGF sensitivity, leading to decreased GFR and an increased body fluid volume.

Full Text

The Full Text of this article is available as a PDF (199.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann S., Bosse H. M., Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol. 1995 May;268(5 Pt 2):F885–F898. doi: 10.1152/ajprenal.1995.268.5.F885. [DOI] [PubMed] [Google Scholar]
  2. Bachmann S., Mundel P. Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis. 1994 Jul;24(1):112–129. doi: 10.1016/s0272-6386(12)80170-3. [DOI] [PubMed] [Google Scholar]
  3. Bank N., Aynedjian H. S., Khan G. A. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension. 1994 Sep;24(3):322–328. doi: 10.1161/01.hyp.24.3.322. [DOI] [PubMed] [Google Scholar]
  4. Bank N., Aynedjian H. S. Role of EDRF (nitric oxide) in diabetic renal hyperfiltration. Kidney Int. 1993 Jun;43(6):1306–1312. doi: 10.1038/ki.1993.183. [DOI] [PubMed] [Google Scholar]
  5. Baylis C., Harton P., Engels K. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol. 1990 Dec;1(6):875–881. doi: 10.1681/ASN.V16875. [DOI] [PubMed] [Google Scholar]
  6. Baylis C., Mitruka B., Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest. 1992 Jul;90(1):278–281. doi: 10.1172/JCI115849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beierwaltes W. H. Selective neuronal nitric oxide synthase inhibition blocks furosemide-stimulated renin secretion in vivo. Am J Physiol. 1995 Jul;269(1 Pt 2):F134–F139. doi: 10.1152/ajprenal.1995.269.1.F134. [DOI] [PubMed] [Google Scholar]
  8. Boberg U., Persson A. E. Increased tubuloglomerular feedback activity in Milan hypertensive rats. Am J Physiol. 1986 Jun;250(6 Pt 2):F967–F974. doi: 10.1152/ajprenal.1986.250.6.F967. [DOI] [PubMed] [Google Scholar]
  9. Bouriquet N., Casellas D. Chronic L-NAME hypertension in rats and autoregulation of juxtamedullary preglomerular vessels. Am J Physiol. 1995 Aug;269(2 Pt 2):F190–F197. doi: 10.1152/ajprenal.1995.269.2.F190. [DOI] [PubMed] [Google Scholar]
  10. Buga G. M., Gold M. E., Fukuto J. M., Ignarro L. J. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension. 1991 Feb;17(2):187–193. doi: 10.1161/01.hyp.17.2.187. [DOI] [PubMed] [Google Scholar]
  11. Cabrera C., Bohr D. The role of nitric oxide in the central control of blood pressure. Biochem Biophys Res Commun. 1995 Jan 5;206(1):77–81. doi: 10.1006/bbrc.1995.1011. [DOI] [PubMed] [Google Scholar]
  12. Casellas D., Moore L. C. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles. Am J Physiol. 1990 Mar;258(3 Pt 2):F660–F669. doi: 10.1152/ajprenal.1990.258.3.F660. [DOI] [PubMed] [Google Scholar]
  13. Casellas D., Navar L. G. In vitro perfusion of juxtamedullary nephrons in rats. Am J Physiol. 1984 Mar;246(3 Pt 2):F349–F358. doi: 10.1152/ajprenal.1984.246.3.F349. [DOI] [PubMed] [Google Scholar]
  14. Daniels F. H., Arendshorst W. J., Roberds R. G. Tubuloglomerular feedback and autoregulation in spontaneously hypertensive rats. Am J Physiol. 1990 Jun;258(6 Pt 2):F1479–F1489. doi: 10.1152/ajprenal.1990.258.6.F1479. [DOI] [PubMed] [Google Scholar]
  15. Deng A., Baylis C. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Physiol. 1993 Feb;264(2 Pt 2):F212–F215. doi: 10.1152/ajprenal.1993.264.2.F212. [DOI] [PubMed] [Google Scholar]
  16. Johnson R. A., Freeman R. H. Sustained hypertension in the rat induced by chronic blockade of nitric oxide production. Am J Hypertens. 1992 Dec;5(12 Pt 1):919–922. doi: 10.1093/ajh/5.12.919. [DOI] [PubMed] [Google Scholar]
  17. Jover B., Herizi A., Ventre F., Dupont M., Mimran A. Sodium and angiotensin in hypertension induced by long-term nitric oxide blockade. Hypertension. 1993 Jun;21(6 Pt 2):944–948. doi: 10.1161/01.hyp.21.6.944. [DOI] [PubMed] [Google Scholar]
  18. Juncos L. A., Ren Y., Arima S., Garvin J., Carretero O. A., Ito S. Angiotensin II action in isolated microperfused rabbit afferent arterioles is modulated by flow. Kidney Int. 1996 Feb;49(2):374–381. doi: 10.1038/ki.1996.55. [DOI] [PubMed] [Google Scholar]
  19. Matsuoka H., Nishida H., Nomura G., Van Vliet B. N., Toshima H. Hypertension induced by nitric oxide synthesis inhibition is renal nerve dependent. Hypertension. 1994 Jun;23(6 Pt 2):971–975. doi: 10.1161/01.hyp.23.6.971. [DOI] [PubMed] [Google Scholar]
  20. Mohaupt M. G., Elzie J. L., Ahn K. Y., Clapp W. L., Wilcox C. S., Kone B. C. Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney Int. 1994 Sep;46(3):653–665. doi: 10.1038/ki.1994.318. [DOI] [PubMed] [Google Scholar]
  21. Moore P. K., Babbedge R. C., Wallace P., Gaffen Z. A., Hart S. L. 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol. 1993 Feb;108(2):296–297. doi: 10.1111/j.1476-5381.1993.tb12798.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mundel P., Bachmann S., Bader M., Fischer A., Kummer W., Mayer B., Kriz W. Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int. 1992 Oct;42(4):1017–1019. doi: 10.1038/ki.1992.382. [DOI] [PubMed] [Google Scholar]
  23. Qiu C., Engels K., Baylis C. Angiotensin II and alpha 1-adrenergic tone in chronic nitric oxide blockade-induced hypertension. Am J Physiol. 1994 May;266(5 Pt 2):R1470–R1476. doi: 10.1152/ajpregu.1994.266.5.R1470. [DOI] [PubMed] [Google Scholar]
  24. Ribeiro M. O., Antunes E., de Nucci G., Lovisolo S. M., Zatz R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension. 1992 Sep;20(3):298–303. doi: 10.1161/01.hyp.20.3.298. [DOI] [PubMed] [Google Scholar]
  25. Rubanyi G. M., Romero J. C., Vanhoutte P. M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986 Jun;250(6 Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145. [DOI] [PubMed] [Google Scholar]
  26. Sander M., Hansen P. G., Victor R. G. Sympathetically mediated hypertension caused by chronic inhibition of nitric oxide. Hypertension. 1995 Oct;26(4):691–695. doi: 10.1161/01.hyp.26.4.691. [DOI] [PubMed] [Google Scholar]
  27. Shultz P. J., Archer S. L., Rosenberg M. E. Inducible nitric oxide synthase mRNA and activity in glomerular mesangial cells. Kidney Int. 1994 Sep;46(3):683–689. doi: 10.1038/ki.1994.321. [DOI] [PubMed] [Google Scholar]
  28. Thorup C., Erik A., Persson G. Macula densa derived nitric oxide in regulation of glomerular capillary pressure. Kidney Int. 1996 Feb;49(2):430–436. doi: 10.1038/ki.1996.62. [DOI] [PubMed] [Google Scholar]
  29. Thorup C., Persson A. E. Impaired effect of nitric oxide synthesis inhibition on tubuloglomerular feedback in hypertensive rats. Am J Physiol. 1996 Aug;271(2 Pt 2):F246–F252. doi: 10.1152/ajprenal.1996.271.2.F246. [DOI] [PubMed] [Google Scholar]
  30. Thorup C., Persson A. E. Inhibition of locally produced nitric oxide resets tubuloglomerular feedback mechanism. Am J Physiol. 1994 Oct;267(4 Pt 2):F606–F611. doi: 10.1152/ajprenal.1994.267.4.F606. [DOI] [PubMed] [Google Scholar]
  31. Thorup C., Sundler F., Ekblad E., Persson A. E. Resetting of the tubuloglomerular feedback mechanism by blockade of NO-synthase. Acta Physiol Scand. 1993 Jul;148(3):359–360. doi: 10.1111/j.1748-1716.1993.tb09569.x. [DOI] [PubMed] [Google Scholar]
  32. Tolins J. P., Palmer R. M., Moncada S., Raij L. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses. Am J Physiol. 1990 Mar;258(3 Pt 2):H655–H662. doi: 10.1152/ajpheart.1990.258.3.H655. [DOI] [PubMed] [Google Scholar]
  33. Tolins J. P., Shultz P. J. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int. 1994 Jul;46(1):230–236. doi: 10.1038/ki.1994.264. [DOI] [PubMed] [Google Scholar]
  34. Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
  35. Vallon V., Thomson S. Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback. Am J Physiol. 1995 Dec;269(6 Pt 2):F892–F899. doi: 10.1152/ajprenal.1995.269.6.F892. [DOI] [PubMed] [Google Scholar]
  36. Wilcox C. S., Welch W. J., Murad F., Gross S. S., Taylor G., Levi R., Schmidt H. H. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11993–11997. doi: 10.1073/pnas.89.24.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. el Karib A. O., Sheng J., Betz A. L., Malvin R. L. The central effects of a nitric oxide synthase inhibitor (N omega-nitro-L-arginine) on blood pressure and plasma renin. Clin Exp Hypertens. 1993 Sep;15(5):819–832. doi: 10.3109/10641969309041644. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES